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Abstract

Efforts to construct predictive grain boundary (GB) structure-property models have historically relied
on property measurements or calculations made on bicrystals. Experimental bicrystals can be difficult
or expensive to fabricate, and computational constraints limit atomistic bicrystal simulations to high
symmetry GBs (i.e. those with small enough GB periodicity). Although the use of bicrystal property
data to construct GB structure-property models is more direct, in many experimental situations the
only type of data available may be measurements of the effective properties of polycrystals. In this
work, we investigate the possibility of inferring GB structure-property models from measurements of
the homogenized effective properties of polycrystals when the form of the structure-property model is
unknown. We present an idealized case study in which GB structure-property models for diffusivity
are inferred from noisy simulation results of two-dimensional microstructures, under the assumption
that the number of polycrystal measurements available is larger than the number of parameters in the
inferred model. We also demonstrate how uncertainty quantification for the inferred structure-property
models is easily performed within this framework.

Keywords: Grain Boundary, Structure-Property Model, Inference, Uncertainty Quantification, Inverse
Problem

1. Introduction

Efforts to develop grain boundary (GB) structure-property models have historically relied on exper-
iments or atomistic calculations performed on bicrystals [1–4]. However, due to the high dimensionality
of the GB configuration space, measuring and/or calculating GB properties one-by-one has limited the
scope of investigations primarily to a relatively small set of highly symmetric GB types [5]. This has
greatly hampered the development of GB structure-property models and, at present, prediction of GB
properties as a function of their crystallography is only possible for a small number of properties [6, 7].

While the use of bicrystal data to construct GB structure-property models is the most direct route,
bicrystals are not always available; rather, the most ubiquitous microstructures are polycrystalline and
data for the effective (homogenized) properties of polycrystals may be the only data available in many
situations. Thus, we ask the question, “If I only have access to polycrystals, would it be possible to
use them to infer GB structure-property models?” While one might intuitively anticipate an affirmative
answer to this question, the challenge for such an approach lies in the deconvolution of the respective
contributions of each GB to the measured effective property of the polycrystal (which is the observed
data that is available).
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Because it is the inverse of the problem of homogenization, we refer to this problem of inferring
constituent properties from the effective properties of a material as property localization1. Previous ex-
amples of localization problems in the literature have focused on obtaining single crystal elastic constants
from measurements of the elastic response of polycrystals [15–25].

We have recently applied the property localization concept to GBs to infer the parameters of a
structure-property model for GB diffusivity from synthetic idealized two-dimensional polycrystals with
honeycomb geometry [26]. In that prior work, the inverse problem of GB property localization was
solved by regression with an analytical ansatz (i.e. the form of the structure-property model was
known a priori). Although successful, the requirement of an explicit analytical ansatz is a significant
limitation because for many GB properties, including diffusivity, the functional form of the structure-
property model is unknown; in fact, the model form is precisely the information one hopes to learn by
the inference effort.

In this work, we develop a new approach for GB property localization based on Bayesian strategies
employed in geostatistics. In addition to eliminating the requirement for an analytical ansatz, our new
method naturally facilitates uncertainty quantification for the inferred structure-property model. In
short, our method allows one to characterize polycrystalline samples, measure their effective (macro-
scopic) properties, and from this information determine the properties of the constituent GBs without
any a priori knowledge about the form of the underlying structure-property model and with rigorously
quantified uncertainty. We will focus here on the overdetermined case: when the number of available
polycrystal measurements is larger than the number of values/parameters to be inferred. This is likely
to be the case when the GB property depends, at least approximately, on only one or a small subset of
the crystallographic GB parameters (e.g. the disorientation angle, or the GB plane). In a sequel to this
paper we address the underdetermined case, the solution of which is an extension of the mathematical
tools developed here. To validate our new approach, we infer structure-property models for GB diffu-
sivity from calculations of the effective diffusivity of realistic two-dimensional polycrystals, without the
need for a priori information about the form of the constitutive models. By enabling the use of simple
to manufacture, and abundantly available polycrystals (instead of reliance on bicrystals), we anticipate
that this new strategy will assist in the problem of inferring structure-property models for GBs.

2. Methods

The goal of this study is to develop a new GB property localization method to infer structure-property
models for GB diffusivity from the effective diffusivity of polycrystals. In the present work, we describe
the relevant theory and demonstrate its application for an idealized model system, in an effort to validate
the approach. The paper is organized as follows: Section 2.1 describes the synthetic microstructures
used in this work; Section 2.2 outlines how the effective grain boundary network diffusivity is calculated;
Sections 2.3 and 2.4 describe the theory of property localization, including corresponding uncertainty
quantification; and in Section 3 we present and discuss our results.

2.1. Microstructures

We generated 2D polycrystalline microstructures using the method of Johnson, et al. [27]. Each
microstructure is the result of an isotropic grain growth simulation performed using a front-tracking

1We use the term “property localization” to distinguish this problem from the more frequently studied problem of
inferring the local state (e.g. the local stress tensor) from the macroscopic state (e.g. the effective stress tensor) of a
polycrystal [8–14], which we refer to as “state localization”.
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Figure 1: Example of a two-dimensional polycrystal template used in this study. Colors indicate crystallographic orienta-
tion, as shown in the accompanying inverse pole figure (IPF) color legend.

algorithm [28] (code written by Jeremy Mason2). Each simulation was initialized with a Voronoi mi-
crostructure constructed from randomly generated uniformly distributed seeds and resulting in 1000
cells (i.e. grain precursors). We allowed the microstructure to evolve under mean curvature flow until
about 100 grains remained. We then assigned grain orientations according to the simulated annealing
procedure described in [27] which ensures that the generated polycrystals span the space of possible
triple-junction fractions3 in order to encourage diversity of the grain boundary network (GBN) struc-
ture in the resulting pool of microstructures. An example microstructure generated by this procedure
is shown in Fig. 1. A pool of 1771 polycrystals was generated spanning the space of triple-junction
fractions, from which representatives were selected uniformly at random during the inference process.

2.2. Homogenization

For each microstructure, the effective diffusivity of the GBN is calculated via (see Appendix A)

D̄pred(D ,M) = −L
A
Lᵀ
b L̂
−1eb (1)

where D̄pred is the effective diffusivity; M abstractly represents the relevant microstructural information
(i.e. the character and arrangement of the GBs in the present application); D is a function that
abstractly represents the GB diffusivity structure-property model; L and A are the length and cross-
sectional area of the polycrystal, respectively; Lb is the b-th column of the diffusivity-weighted GBN
Laplacian matrix (L), which encodes the topology of the GBN and the diffusivity of each GB [27]; eb is

a vector whose b-th element is 1, all others being 0; and L̂ is a modified version of L, in which the a-th
and b-th rows are replaced by eᵀa and eᵀb , respectively, and where a and b are the indices of the diffusivity
source and sink nodes respectively (the left and right sides, respectively, of the microstructures in our
study).

2The code implements the method established by [28], and is available at http://mason.mse.ucdavis.edu/

wp-content/uploads/2018/01/FTGG2_v1_0.zip.
3Triple junction fractions, J0, J1, J2, and J3, represent the population of GB triple junctions coordinated by 0, 1, 2, or

3 “special” GBs, respectively. Further discussion about triple junction fractions can be found in [29–34].
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For our synthetic microstructures, Eq. 1 is exact. However, in practical applications, one would
employ digital representations of microstructures acquired from, e.g., electron backscatter diffraction
(EBSD) measurements, and property measurement techniques with finite resolution. To simulate un-
certainties that would arise from measurement uncertainty, we add Gaussian noise such that the observed
effective diffusivity (D̄obs) is given by:

D̄obs = D̄pred + ε (2)

where ε ∼ N
[
0,
(
1%
(
D̄pred

))2]
. The uncertainty in microstructure characterization via EBSD is negli-

gible [35–39] compared to the uncertainty in typical measurements of diffusivity. Consequently, we do
not add any noise to M , but treat it exactly.

With both D̄obs and M being measured, the unknown in Eq. 1 is the structure-property model,
D , which we seek to infer using the tools of Bayesian inverse problem theory. For the purposes of
validation, we assign GB diffusivities using a hypothetical constitutive model. Because no general
structure-property models for GB diffusivity currently exist4, we employ the function developed by
Bulatov, Reed, and Kumar to describe GB energy [7], but we map it to the range of realistic values
of GB diffusivity as described later; we will refer to this as the BRK model. With GB diffusivities
assigned, we then calculate the effective diffusivity using the procedure already described, including the
introduction of noise. During the inference process, we ignore any knowledge of the assigned constitutive
model and consider only M and D̄obs as the input variables. Validation of the inference method then
consists of comparing the actual constitutive model with the inference result.

2.3. GB Property Localization

In this section, we describe how GB property localization is performed in general, and then how a
Bayesian approach to inverse problem theory may be applied in this context. GB property localization
[26] consists of first characterizing the microstructures of a set of polycrystals (e.g. via EBSD). The
resulting microstructural information is denoted M = {M1,M2, ...,MN}, where Mi describes the i-th
microstructure. Measurements are then performed to determine the relevant effective property of each
polycrystal. In the present case we are interested in the effective diffusivity, D̄obs = {D̄obs

1 , D̄obs
2 , ..., D̄obs

N }.
The relevant homogenization relation, Eq. 1, is then inverted to determine the unknown structure-
property model, D .

Here, we propose the use of a Bayesian framework to perform the homogenization inversion step
to solve for the unknown structure-property model. The formalism developed by Tarantola, Valette,
and Mosegaard [42–44] allows us to describe our “state of information” (what we know) about D after
making our measurements of M and D̄obs using the following probability density function, or PDF (see
Appendix B for a complete derivation):

σ(D ,M) ∝ ρ{D ,M} (D ,M) ρD̄obs

(
D̄pred(D ,M)

)
(3)

Here, σ(D ,M) is the a posteriori joint probability density of D and M; ρ{D ,M} (D ,M) is the a priori
state of information about D and M; and ρD̄obs

(
D̄pred(D ,M)

)
is a likelihood function which quantifies

how well the model explains the data. With M and D̄obs obtained via measurement, we infer the
unknown structure-property model for GB diffusivity (D) by determining, among all possible models,
the one that maximizes σ(D ,M). We wish to do this without an ansatz for the model form, so that both

4In the absence of a measured structure-property model, computational studies have typically employed a discrete
binary model with low- and high-angle GBs possessing different constant values of properties [26, 40], though there are
some studies that have employed continuous functions (see [41] for an example).
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the form and any model parameters are dictated by the observed data. As will be described below, we
accomplish this by first discretizing the domain of D , then describing the a priori state of information
by appropriate PDFs, and finally, solving an optimization problem with Eq. 3 as the objective function
to infer the value of the diffusivity structure-property model at specific points over the domain, thus
obtaining a piece-wise linear approximation to D .

Because we wish to infer the structure-property model without a priori knowledge of its form, we
discretize the GB character space so that D will be approximated as a piece-wise linear function with
unknown parameters D = {D1, D2, ..., DJ}, where the Dj are the diffusivities at locations across the
domain that will be specific to the particular discretiztaion employed. The only a priori information
about the model parameters that we consider is that the diffusivity is everywhere non-negative (i.e. we
assume that no spinodal-type phase transformation is occurring). This prior knowledge can be expressed
probabilistically by setting the probability density to zero for any model containing any elements of D
that are negative:

ρD(D) =

{
1, Dj ≥ 0,∀ j ∈ [1, J ]

0, otherwise
(4)

Because we are using simulated polycrystals, our a priori knowledge of each microstructure is exact.
Technically this implies a generalized Dirac delta function, δ(M′,M), for the a priori state of informa-
tion about M; however, because the zero value of such a function would be reserved for conditions that,
by definition, can never be satisfied, it is sufficient to define ρM(M) = 1. If experimental samples were
considered, this assumption would also be a reasonable approximation if the measurement uncertainty
for the microstructure characterization was small compared to other sources of uncertainty—which is
often the case—otherwise, their ρM(M) would need to be represented by a distribution whose disper-
sion encoded the uncertainty resulting from the characterization procedure. We have hitherto referred
abstractly to M as containing some information about the state of the microstructure. This is because
for property localization in general, different properties of interest may depend on the character/state of
different microstructural features (e.g. composition, phase fractions, phase morphology, crystallographic
texture). The details about what information is contained in M and how it is represented are therefore
problem specific, but the methods presented here are quite general. For the present problem, M contains
the character and arrangement of the GBs in the microstructure, explicitly given by the GBN Laplacian,
L, described in Section 2.2.

The independence of D and M implies that their joint distribution is given by:

ρ{D ,M} (D,M) = ρD(D)ρM(M) (5)

Finally, for each polycrystal, we represent the likelihood function by a Gaussian-like PDF:

ρD̄obs

(
D̄pred(D,Mi)

)
∝ exp

(
−
(
D̄obs
i − D̄pred(D,Mi)

)2
2s2i

)
(6)

where, si characterizes the measurement uncertainty of D̄obs
i , which, in the present case, is equal to the

standard deviation of the noise we introduced (i.e. si = 1%D̄pred(D ,Mi)). Because we assume that
we only know D̄obs (not D̄pred), we estimate the value of si as si ≈ 1%

(
D̄obs
i

)
. Considering all of the

microstructures together we have, again because of independence, the joint distribution

ρD̄obs

(
D̄pred(D,M)

)
∝ exp

(
−

N∑
i=1

(
D̄obs
i − D̄pred(D,Mi)

)2
2s2i

)
(7)
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This implies that when a model (D) is considered that minimizes the difference between D̄obs and
D̄pred(D,M), the likelihood will be maximized and such a model would best explain the observed data.

Substituting Eqs. 5 and 7 into Eq. 3, with D representing the discrete approximation to D , we obtain
the a posteriori state of information for the independent parameters:

σ (D,M) ∝

exp

(
−

N∑
i=1

(
D̄obs
i − D̄pred(D,Mi)

)2
2s2i

)
, D ≥ 0

0, otherwise

(8)

With an expression for the a posteriori state of information in hand we are now in a position
to perform the inversion of the homogenization equation to infer the approximation of D . This is
accomplished by maximizing σ (D,M), with the Dj as the design variables:

D = arg max
D

σ (D,M) (9)

Because the form of Eq. 8 is a multivariate Gaussian, the maximum coincides with the center of the
distribution, whose location occurs at [44]:

D =
(
GᵀC−1

D̄obsG
)−1 (

GᵀC−1
D̄obsD̄

obs
)

(10)

where Cij

D̄obs = siδij is the covariance matrix of the observed effective diffusivities, and

Gij =
∂D̄pred(D,Mi)

∂Dj

∣∣∣∣
D

(11)

is the matrix of partial functional (Fréchet) derivatives. Note that because Eq. 11 is evaluated at the
point D in the model space, this implies that Eq. 10 is an implicit equation. To solve this equation we
use a fixed-point method:

Dk+1 =
(
Gᵀ

kC−1
D̄obsGk

)−1 (
Gᵀ

kC−1
D̄obsD̄

obs
)

(12)

where, Gk is just G evaluated at Dk. Equation 12 typically converges within less than a dozen iterations.
Solution of Eq. 10 (via Eq. 12) allows us to infer the unknown structure-property model for GB

diffusivity without knowing the form of the model a priori. Additionally, because the a posteriori
information is represented by a probability density function, it is possible to quantify the uncertainty
of the inference [45, 46], as will be explained in Section 2.4. We note, that in situations for which the a
posteriori state of information is non-Gaussian, Eq. 9 may be solved using standard gradient-based or
stochastic optimization algorithms. Also, the methods presented here are general and do not depend in
any way on the piece-wise linear approximation employed.

2.4. Uncertainty Quantification

In addition to inferring the structure-property model that is most probable given the observed data,
it is also desirable to quantify how much uncertainty exists in our inferred result (see [45, 46]). In
technical terms, we seek to quantify the dispersion in σ (D,M), resulting from the combined influence
of the dispersion in all of the underlying models of the a priori states of information (including limitations
due to measurement resolution). Here we make these ideas concrete and describe how we calculate the
uncertainty before presenting our inference results together with their corresponding uncertainty.

Let us consider a simple example in which the domain of the structure-property model (D) is
discretized such that there are only two parameters (see Fig. 2b). For this example, the domain of
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Figure 2: Illustration of the uncertainty quantification method. (a) Contour plot of σ ({D,M}) with the marginal densities
for each dimension shown as dotted lines. (b) The corresponding structure-property model (D), discretized into two bins.

σ (D,M) is two dimensional, so we can directly visualize it as the contour plot shown in Fig. 2a. Each
point in the space shown in Fig. 2a represents a different candidate structure-property model, whose
coordinates are the elements of D and provide the values of the structure-property model at specific
points (see Fig. 2b). The color of the contour plot indicates the value of σ (D,M), which represents
the probability density that any structure-property model is consistent with the observed data, taking
into account relevant uncertainties. Thus the model associated with the peak in Fig. 2a is the one that
is most consistent with the observed data. The marginal density in each dimension (shown as dotted
black lines in Fig. 2a) provides a measure of the uncertainty of the inferred value of the corresponding
parameter. A straightforward quantification of the dispersion in the marginal distributions may be
obtained by calculating the posterior covariance matrix. Which, for the present case of a Gaussian
σ (D,M), is given by [44]:

C̃D =
(
GᵀC−1

D̄obsG
)−1

(13)

The square roots of the diagonal elements,

√
C̃jj

D , provide the standard deviations of the marginal

distributions of each respective parameter (Dj), which we can show visually as the magnitudes of the
error-bars as illustrated in Fig. 2b.

3. Results & Discussion

We considered both one-dimensional and three-dimensional constitutive models to validate our infer-
ence method. In the first case, we considered microstructures in which the crystallographic orientations
of all grains shared a common 〈100〉 axis and all GBs were of 〈100〉 tilt character where the GB plane
was ignored so that D was a one-dimensional function of ω. We refer to this as the one degree-of-
freedom (1DOF) case. In the second case, we considered more general microstructures with arbitrary
crystallographic orientations resulting in arbitrary disorientations, but we again ignored the influence
of the GB plane so that D was a three-dimensional function of the angle (ω) and axis (θ, φ) of the
disorientation. We refer to this as the three degree-of-freedom (3DOF) case. In the most general case,
D is technically a second-rank tensor function encoding the anisotropic diffusivity in the plane of the
GB and across it. If desired, inference of the elements of such a diffusivity tensor can be accomplished
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using the methods described here. For now, we focus on the simple and illustrative case when D is
assumed to be a scalar-valued function.

To validate our method, we first characterized the simulated 2D polycrystals to obtain the mi-
crostructural information, M. Then, we obtained the observed effective diffusivity of the polycrystals,
D̄obs, by means of the method presented in Section 2.2. We then employed the proposed GB property
localization method to infer D without considering any prior information about the true underlying
structure-property model other than the fact that it is assumed to be non-negative. Validation of the
inference method was then carried out by comparing the true constitutive model with the inference
result. For each model, the inference was performed 50 times with different randomly selected sets of
polycrystals, and the results presented correspond to the the inference with the median error over the
50 trials. For the 1DOF models, sets of 50 polycrystals were used; for the 3DOF models, sets of 110
polycrystals were used (both correspond to a 5:1 ratio of data to parameters).

3.1. 1DOF Validation Results

As mentioned previously, our discretization produces a piece-wise linear approximation to D , which
we will denote D̂ . In the 1DOF case we employed a uniform discretization with 5◦ resolution. We
considered two different constitutive models for the 1DOF validation tests.

The first 1DOF constitutive model, as mentioned previously, was a modified version of the function
developed by Bulatov, Reed, and Kumar to describe GB energy [7], which we linearly scaled and shifted
to the range of realistic values of GB diffusivity for aluminum. Specifically, this transformation resulted
in a model for which the minimum and maximum GB diffusivities were approximately equal to those
employed in [47], which were extracted from the atomistic calculations of [48]. Our second 1DOF test
employed the following analytical model:

D(ω) = Dhigh exp

[(
log

(
Dlow

Dhigh

))((
4ω

π

)
− 1

)4
]

(14)

which is similar in form to results from experimental and computational surveys of diffusivity for 〈100〉
tilt GBs [49, 48]. In Eq. 14, Dlow and Dhigh are the minimum and maximum diffusivities respectively,
the values of which were the same as those employed in the 1DOF BRK model.

We make several notes about the constitutive models employed here. First, there is no existing
structure-property model to predict GB diffusivity as a function of GB crystallography. Consequently,
the models we have employed are not intended to be quantitatively accurate descriptions of actual GB
diffusion processes, rather we have chosen models that possess qualitative features (e.g. the existence of
singularities, diffusivity values that vary over many orders of magnitude) that reflect trends observed in
the literature, in order to assess how well such features can be captured by the localization technique.
Second, for the 1DOF case, the grain orientations assigned to the simulated polycrystals shared a
common 〈100〉 rotation axis orthogonal to the sample surface, making all of the GBs 〈100〉 tilts. The
first model we employed for D(ω) is constructed by evaluating the full five degree-of-freedom BRK model
over the one-dimensional submanifold corresponding to 〈110〉 symmetric tilt GBs. This submanifold was
selected instead of the submanifold of 〈100〉 symmetric tilts because of the presence of a deeper cusp,
which provides a clearer test of the inference method. The data that inspired the second 1DOF model
were for 〈100〉 symmetric tilt GBs. Although all of the GBs in the 1DOF simulated microstructures are
strictly 〈100〉 tilts, they are not all symmetric tilts, and, to make the model one-dimensional, we have
ignored the GB plane altogether. Because we have ignored the GB plane, the domain of the disorientation
angle is symmetric about 45◦. Again, fidelity to the crystallography of the original data that inspired the
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models was not our objective. Rather, regardless of their origin, we have selected/constructed models
whose forms exhibit relevant features.

Figure 3: Comparison between the inferred model and the true model for (a) the 1DOF BRK function and (b) the
exponential function of Eq. 14, together with quantified inference uncertainty. The inferred model shown is the one having
the median error over 50 trials (inferences). The disorientation angle distribution across all of the employed microstructures
is shown in histogram form above each plot. The bottom right plot is another view of the 1DOF exponential function, but
with a logarithmically scaled vertical axis. Because of the logarithmic axis scaling, one zero valued point and two lower
error bars that extend slightly below zero cannot be shown.

The localization results for both 1DOF models, together with the quantified uncertainty, can be seen
in Fig. 3, where the green line is the model we attempted to infer (and which was ignored during the
inference process). The red dashed line represents the piece-wise linear inference. The gray error bars

indicate one standard deviation (

√
C̃jj

D ) in the marginal distribution of the respective parameter, which
is our chosen metric to represent the uncertainty. Finally, the histogram shows the disorientation angle
distribution across all of the microstructures employed in the inference. Note that with 50 randomly
selected microstructures all of the bins contain a multiplicity of observations. Even with the coarse
binning, and piece-wise linear representation, the results show very good agreement with the true models
in both cases. In particular, we note that the localization inference successfully captured the singularity
in the 1DOF BRK model (Fig. 3a). Figure 3b confirms that the method is also successful when the
constitutive model spans many orders of magnitude. A quantitative discussion of the inference accuracy
is presented later.
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3.2. 3DOF Validation Result

For the 3DOF case, the GB property localization approach was validated against another modified
version of the BRK energy function. In this case, instead of evaluating the BRK function along a
submanifold, a three-dimensional constitutive model was constructed by integrating over the degrees of
freedom corresponding to the GB plane:

D(ω, θ, φ) ∝
∫ 2π

0

∫ π
2

0

BRK(ω, θ, φ, α, β) sinα dα dβ (15)

In this 3DOF GB structure-property model, the diffusivity is a function of the disorientation angle (ω)
and axis (θ, φ). Discretization of the disorientation fundamental zone (FZ) was carried out using the
volumetric meshing capabilities of the Neper software package [50–53] with the Rodriguez space pa-
rameterization of the disorientation FZ supplied as the domain. The -mesh3dalgo netg:gmne meshing
option was employed, which resulted in tetrahedral bins of approximately equal volume (see Fig. 4).

Figure 4a shows the results of the localization inference applied to the 3DOF model, using a piece-
wise linear model constructed from a tetrahedral mesh with a total of 22 vertices (model parameters).
In spite of the very coarse resolution employed (only 2.8 points per dimension), the agreement of the
inference with the true model is decent. Figure 4b shows the uncertainty of the inference, quantified
in the same way as the 1DOF case. We note that the uncertainty for the 3DOF case is similar in
magnitude to the uncertainty in the 1DOF case. The 3DOF case shows that the localization method
can be applied to a higher dimensional model and is encouraging for the ultimate goal of applying it
to infer a structure-property model for GB diffusivity from experimental data as a function of all five
degrees of freedom.

Figure 4: (a) Comparison between the true (left) and the inferred (right) 3DOF GB diffusivity structure-property model,
displayed in the Rodriguez space parameterization of the disorientation fundamental zone (FZ). (b) The magnitude of the
uncertainty (one standard deviation) in the inference. Interior lines define the boundaries of the tetrahedral bins used in
the discretization.

The results just described demonstrate that the inverse problem theory approach to GB property
localization can successfully infer a piece-wise linear approximation to an unknown structure-property
model without the need for an ansatz of its analytical form.

3.3. Inference Accuracy

To quantify the accuracy of the inference results, we calculated the average integrated relative log
error between the inferred model and the true model. Because the GB diffusivity structure-property
models span orders of magnitude, care must be taken when computing differences. For example, a
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deviation of 1 might be very small in a region where a function is on the order of 102, but could be very
large in another region where that function is on the order of 10−2. To address this issue, we calculate
the error on a logarithmic scale:

average integrated relative log error =

∫ ∣∣∣∣∣∣
log
(
D̂(Ω,D)

)
− log (D(Ω))

log (D(Ω))

∣∣∣∣∣∣ dΩ∫
dΩ

(16)

where Ω = {ω} in the 1DOF case and Ω = {ω, θ, φ} in the 3DOF case and the domain as well as

the differential volume element are chosen appropriately. In Eq. 16, D̂(Ω,D) represents the piece-wise
linear approximation to D(Ω) using the parameters in D, and “log” denotes the natural logarithm. The
average integrated relative log error describes the average error (across the entire domain) that would
be expected in the logarithm of a prediction made using the inference result. The integration of Eq. 16
for 1DOF cases was carried out numerically using the trapezoidal rule. For the 3DOF case Monte-Carlo
integration was employed [54].

The average integrated relative log error for each of the models, as shown in Table 1, was quite low,
even for the 3DOF case, which employed a much coarser discretization than the 1DOF case (only 2.8
points per dimension, as opposed to 10 points for the 1DOF case) . To put these error measures in
perspective, if the inferred model predicted a value of 5× 10−13 m2/s for the diffusivity of a particular
GB, one could expect that the true value would be somewhere between 4.7 × 10−13 and 5.3 × 10−13

for the 1DOF BRK model, between 2.2 × 10−13 and 11.3 × 10−13 for the 1DOF exponential model, or
between 4.6× 10−13 and 5.4× 10−13 for the 3DOF model.

model average integrated relative log error

1DOF BRK 0.0023

1DOF Exponential (Eq. 14) 0.0287

3DOF 0.0028

Table 1: Average integrated relative log error of the inferred models.

3.4. Influence of Discretization Resolution and Number of Microstructures

To investigate the influence of discretization resolution, number of microstructures, and their inter-
action, we performed localization for the 1DOF BRK model using different numbers of parameters and
microstructures. As can be seen in Fig. 5, for a fixed number of microstructures, the finer the resolution
of the discretization (i.e. the more parameters that were employed) the lower the error in the inference,
as expected. However, there also appears to be a number of parameters above which the reduction of
the error is not significant (approximately 10 for large numbers of microstructures). Consistent with
intuition, for a fixed number of parameters, the use of more microstructures also leads to improved infer-
ence. However, we again observe a saturation point at a certain number of microstructures (around 50
in the present case, which is the reason that 50 microstructures—or a 5:1 data to parameter ratio—were
used in the results of Section 3), above which there is little added benefit.
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Figure 5: Comparison of the average integrated relative log error of the inference using different numbers of parameters and
microstructures. In this comparison, we used the 1DOF BRK model. The white region corresponds to underdetermined
(or close to underdetermined) points, for which methods in the sequel to this paper should be employed to make meaningful
inferences.

4. Conclusion

In this work, we developed a Bayesian approach to GB property localization that enables the infer-
ence of a GB structure-property model when the only available data are measurements of the effective
properties of polycrystals, and when the form of the model is unknown a priori. We considered the case
when the number of observations is greater than the number of parameters to be inferred. The method
is robust to and rigorously incorporates measurement uncertainty. We tested the method for 1DOF and
3DOF cases and observed satisfactory inference accuracy, even using a relatively coarse discretization.
We also demonstrated how uncertainty quantification for the inference result is naturally included in
the method.

While GB diffusivity was the focus of the present work, the property localization inference method
presented here should also be applicable to other properties of interest for which a suitable homogeniza-
tion relation is available.
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A. Derivation of Diffusivity Homogenization Equation

The derivation of Eq. 1 is related to the idea of [40] that one can obtain the effective diffusivity from
Fick’s First law by considering the flux across some “slice” through the microstructure. However, in
contrast to [40], we are interested in the effective diffusivity of the entire GBN, rather than the average
diffusivity of individual GBs in the network; the two ideas are, nevertheless, intimately related (see
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footnote 1 in [26]). Our approach to calculate the effective diffusivity of the entire GBN is equivalent to
an adaptation of the finite volume method (see [27]). For convenience, we set the concentration at the
source node (node a) to be c0 and consider the total flux (Jb = Qb/A) arriving at the sink node (node
b), whose concentration we fix at 0 (Neumann boundary conditions). The effective diffusivity is then

D̄pred =
L

c0

Qb

A
(17)

and the mass flow rate arriving at the sink is simply

Qb =
∑
i∼b

−DibAib
Lib

(cb − ci) (18)

where Dib, Aib, and Lib are, respectively, the diffusivity, cross-sectional area, and length of the edge
connecting node i to node b, ck is the concentration at node k, and the sum is over all edges in the GBN
that are incident to node b (i ∼ b denotes that there is an edge between nodes i and b). Making use of
the definition of the GBN Laplacian matrix (L) [27], this can be rewritten as

Qb = −Lᵀ
bc (19)

where Lb is the b-th column of L and c is a vector containing the concentration at every node, which is
calculated by solving the linear system of equations defined by

L̂c = c0eb (20)

where L̂ is a matrix formed by replacing the a-th and b-th rows of L with eᵀa and eᵀb respectively, and
where ek is a vector having the k-th element equal to one and all others equal to zero. We note that
Eq. 20 is simply a statement of conservation of mass at every node. Substituting the solution of Eq. 20
into Eq. 19 and substituting the result into Eq. 17 we arrive at Eq. 1. We note also that the direct
inversion of L̂ is not necessary for the solution of Eq. 20, and is not computationally efficient; rather,
standard methods for the solution of linear systems of equations will be preferred. In our implementation
of Eq. 1 we employ MATLAB’s mldivide operator.

B. Inverse Problem Theory

Here we give a brief overview of relevant aspects of Tarantola’s approach to Bayesian inverse problem
theory, and then demonstrate its application to the problem of GB property localization. Inverse problem
theory is a method of inferring model parameters (x) that characterize a system using the results of some
measurements/observations of the system (y) [44, 42, 43, 45, 46]. In a given system, x = {x1, x2, . . . }
is a set containing the independent parameters and y = {y1, y2, . . . } is a set containing the dependent
parameters, both of which we may only hope to know with some imperfect degree of certainty. Tarantola5

proposed that our state of information (what we know about y and x) can be described by a PDF,
called the a posteriori state of information, σ(y,x), which is equal to the conjunction of the a priori
state of information, ρ(y,x), and the theoretical state of information, Θ(y,x) [44]. The a priori state

5It is worth noting that a useful alternative Bayesian formulation of inverse problems exists, as described by [45, 46],
which results in a conditional a posteriori density σ(x |y). We have chosen to follow the approach introduced by Tarantola
[44], which results in the joint a posteriori density σ(y,x) and avoids the, perhaps rare, mathematical singularity that
can exist in σ(x |y) for events with vanishing probability (Borel’s paradox).
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of information is what we know before ever making any observations and may represent some known
physical constraints. The theoretical state of information encodes correlations between x and y resulting
from a homogenization or other physical theory and corresponding uncertainty. Using the Kolmogorov
axioms, Tarantola and Valette showed that the a posteriori state of information is given by [42]:

σ(y,x) = k
ρ(y,x)Θ(y,x)

µ(y,x)
(21)

Here, k is a normalization constant, and µ(y,x) is the homogeneous state of information, which is the
PDF that assigns a probability to each region of the parameter space that is equal to the volume of
that region [43]. Functionally, µ(y,x) represents a state of complete ignorance (i.e. the absence of any
a priori information), so that the ratio in Eq. 21 can be interpreted as quantifying how much is known
relative to a state of complete ignorance. In the present context, Eq. 1 represents the forward problem,
where the dependent parameter is the observed effective diffusivity y = {D̄obs} and the independent
parameters are the structure-property model and sample microstructure x = {D ,M}. As described in
Section 2.3, GB property localization will typically leverage information from multiple samples, so that
we have M = {M1,M2, ...,MN} and D̄obs = {D̄obs

1 , D̄obs
2 , ..., D̄obs

N }. Ignoring the normalization constant,
we can then rewrite Eq. 21 as:

σ(D̄obs,D ,M) ∝ ρ(D̄obs,D ,M)Θ(D̄obs,D ,M)

µ(D̄obs,D ,M)
(22)

The resolution of the inverse problem consists in identifying the structure-property model, D , that
is most probable given our observations of D̄obs and M. This is accomplished by integrating Eq. 22 to
compute the a posteriori state of information over the space of independent parameters:

σ(D ,M) =

∫
σ(D̄obs,D ,M)d(D̄obs) (23)

The evaluation of this integral is facilitated by considering relevant simplifications. Because the a priori
information about M and D is not obtained from measurements of D̄obs, their states of information are
independent [44], which implies that:

ρ(D̄obs,D ,M) = ρD̄obs(D̄obs)ρ{D ,M} (D ,M) (24)

µ(D̄obs,D ,M) = µD̄obs(D̄obs)µ{D ,M} (D ,M) (25)

It should be noted here that subscripts are used to distinguish the functions.
Let us assume that Eq. 1, as the physical theory relating the independent and dependent parameters,

is at most mildly6 non-linear. Combining this assumption with the Kolmogorov definition for conditional
probability [55], and taking the homogeneous probability of the independent parameters as their marginal
probability, Θ(D̄obs,D ,M) can be written, according to the treatment of Tarantola and Vallete [44, 42],
as:

Θ(D̄obs,D ,M) = θ
(
D̄obs | {D ,M}

)
µ{D ,M} (D ,M) (26)

Substituting Eqs. 22 and 24–26 into Eq. 23, we obtain:

6This is rather flexible, and we find that in some cases even strongly non-linear theoretical relations can be considered.
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σ (D ,M) ∝ ρ{D ,M} (D ,M)

∫
ρD̄obs(D̄obs)θ

(
D̄obs | {D ,M}

)
µD̄obs(D̄obs)

d(D̄obs) (27)

Because the manifold that D̄obs inhabits is a linear space, using the definition of homogeneous
probability distribution presented by Mosegaard and Tarantola [43], µ(D̄obs) is constant. We also
make the simplifying approximation that any uncertainty in Eq. 1 is negligible, which implies that
θ
(
D̄obs | {D ,M}

)
= δ(D̄obs−D̄pred(D ,M)). Under these conditions, the integration operation in Eq. 27

results in:

σ(D ,M) ∝ ρ{D ,M} (D ,M) ρD̄obs

(
D̄pred(D ,M)

)
(28)

which is the result given in Eq. 3. The last term, ρD̄obs

(
D̄pred(D ,M)

)
, is a likelihood function, which

quantifies how well the model explains the data. In other words, ρD̄obs

(
D̄pred(D ,M)

)
quantifies how well

the independent parameters explain the dependent parameters. Thus, for the conditions presented here,
the a posteriori state of information about the independent parameters is proportional to the product
of the likelihood function and the a priori state of information about the independent parameters.
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