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Abstract

Experimental and computational studies have demonstrated that the structure of grain boundary
networks (GBNs), e.g. the connectivity of certain types of grain boundaries (GBs), has a significant
impact on macroscopic material properties. Because minor changes in GBN structure can cause large
changes in effective properties, it is common to use large microstructures or report averages over many
microstructural instantiations with the assumption that results become more representative as the size or
number of samples increases. For crystallographic texture, and composite materials, such ideas have been
made rigorous through the definition of representative volume elements (RVEs) and statistical volume
elements (SVEs). However, for GBNs, the size of an RVE and the cardinality of a set of SVEs have
not yet been determined. In this study, we employ stereological methods to evaluate the convergence of
triple junction fractions in both idealized and realistic 2D GBNs to quantitatively define RVEs and SVE
sets for GBNs. We compare these results to those for crystallographic texture in the same polycrystals
and find that the trends for GBNs and texture are remarkably different. Because the vast majority of
experimental work currently relies on 2D microstructure characterization, the results obtained for 2D
systems have great practical value in and of themselves. However, the stereological approach employed
also allows us to make quantitative predictions of RVEs and SVEs for fully 3D microstructures. These
results are expected to aid future experimental and computational work in selecting appropriately sized
material volumes to achieve robust quantitative results.

Keywords: Grain Boundary, Grain Boundary Network, Representative Volume Element, Statistical
Volume Element, Crystallographic Texture

1. Introduction

A representative volume element (RVE) is a volume of material whose properties match—or are
representative of—the macroscopic properties of the larger material from which it was taken. While
the definition of an RVE still varies within the scientific community, it is generally concluded to be
the smallest volume for which this correspondence occurs [1–15], thus, any sample whose size is greater
than the RVE must also represent the macroscopic material. The use of an RVE facilitates accurate
simulations and experiments while minimizing computational cost and experimental effort. It is also
important to note that RVE size depends on the physical property or microstructural attribute being
observed [2–4, 13–15].
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While an RVE is smaller and more efficient to use than the complete microstructure, in many
cases it may still be too large for practical use. The RVE must capture all important microstructural
characteristics of the material at any random location in the structure and must be large enough to
prevent rare heterogeneities from being over- or under-represented. Statistical volume elements (SVEs)
present an alternative solution to this problem. An SVE is a smaller sample than an RVE and thus
does not represent the macroscopic material on its own. However, the aggregate properties of a set of
SVEs are representative of the material [1, 10, 14, 16, 17]. With this definition, any sample size can
be considered an SVE if the set is comprised of enough samples to ensure that their average accurately
represents the macroscopic properties. Smaller sample sizes exhibit more variation in their properties
and thus a greater number are required to constitute an SVE set [1, 3, 14, 16, 18, 19]. We refer to the
number of samples in an SVE set as the SVE set cardinality.

The grain boundary network (GBN) is an important structural characteristic of materials that sig-
nificantly influences many material properties [20–23]. Modification of the types and arrangement of
grain boundaries can result in large changes to the effective properties of a material [24, 25]. Exten-
sive work has been done to investigate GBN structure-property relationships, but quantitative models
are limited in number. To draw accurate conclusions regarding GBN structure-property relationships,
computational and experimental work should employ an RVE or a set of SVEs. Although the size of
RVEs for many material properties have been determined [3, 4, 8, 9, 11, 26, 27], the size of RVEs and
the cardinality of SVE sets for GBNs, and properties that are sensitive to them, have not yet been
determined. Understanding the nature of RVEs and SVEs for GBNs will enable researchers to generate
and quantitatively analyze microstructural data. For instance, the availability of 3D microstructural
data sets has recently increased [28] and this trend is expected to continue. While the value of such
data sets cannot be overstated, current experimental constraints lead to size limitations that require
serious consideration during the experimental design phase and the subsequent data analysis. The same
is often true in computational microstructure studies (e.g. atomistic polycrystals). GBN RVE findings
will aid in this process and facilitate quantitative conclusions for physical phenomena involving GBNs.
In this study, we employ stereological methods to investigate the size of RVEs and the cardinality of
SVE sets for 2D GBNs in polycrystalline materials. We also compare these results to the size of RVEs
and the cardinality of SVE sets for crystallographic texture in the same microstructures. Leveraging
the stereological foundation of our approach, we also make quantitative predictions of RVEs and SVEs
for fully 3D microstructures, under a wide range of conditions.

2. Method

2.1. Preliminaries

Idealized 2D honeycomb microstructures (Fig. 1(a)) containing 99,068 grains (roughly 105) were
generated, similar to those employed in [20, 29–34]. Grains possessed cubic crystal symmetry and all
orientations shared a 〈001〉 rotation axis. Additionally, a front-tracking grain growth code, written by
Jeremy Mason and based on the algorithm of [35], was used to generate microstructures that resembled
more realistic polycrystals (Fig. 1(b)) each having between 99,997–10,000 grains (again roughly 105).
These two types of microstructures will be referred to as honeycomb and grain growth microstructures,
respectively. For both types of microstructures, grain orientations were assigned—using a procedure
that will be described below—and GB disorientations were computed. GBs were subsequently classified
as special or general based on the Brandon criterion (i.e. low-angle boundaries whose disorientations
were less than 15 degrees were considered special) [36, 37].

It has been observed that increasing the population of these special grain boundaries in a material
enhances its properties (e.g., resistance to intergranular cracking and hydrogen embrittlement) [21, 22,
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Figure 1: (a) An idealized 2D honeycomb microstructure (at 6× and 20× magnification) and (b) a more realistic 2D
microstructure created from a grain growth algorithm (at 4× and 20× magnification).

32]. However, an increase in the percentage of special boundaries is not necessarily sufficient to improve
material properties [29, 31, 38]. The fraction of special boundaries does not account for naturally
occurring correlations in the GBN. For example, cracks that propagate along general boundaries need
only a single connected path to transit the entire microstructure, resulting in fracture. The fraction
of special or general boundaries does not encode their spatial arrangement, which can result in widely
varying properties even for GBNs with identical special fractions. To account for connectedness between
GB types, we use triple junction (TJ) types, and their respective populations, to characterize the
connectivity of the GBN [29–31, 38]. TJ fractions of type {Ji| i ε {0, 1, 2, 3}} denote the proportion
of TJs in a microstructure coordinated by i special boundaries. For example, in a microstructure with
J1 = 50%, half of its TJs would contain one special GB (and two general GBs). Microstructures
characterized by high J2 and J3 concentrations break up the connectivity of general GBs, and thus
inhibit processes such as electromigration and crack propagation [25].

These TJ fractions can be represented in a tetrahedral configuration space similar to a quaternary
phase-diagram (we will refer to this as the J-space), where each vertex represents a microstructure com-
posed of 100% of the corresponding TJ type [30]. To investigate the influence of TJ fraction on RVE size
and SVE set cardinality, and to consider a diverse set of microstructures, we generated microstructures
spanning the J-space. Figure 2 shows representative GBNs at several points throughout this space. The
J-space was binned, and a Simulated Annealing program was used to obtain microstructures with TJ
fractions in each bin [39]. This program takes a microstructure with an initial random assignment of
grain orientations and, at each Monte Carlo step, accepts or rejects random changes to grain orienta-
tions until the desired TJ fractions of the microstructure are obtained, while preserving crystallographic
constraints. A total of 1388 and 1394 bins, spanning roughly 78% of the J-space, were successfully
reached for the honeycomb and grain growth templates, respectively. We repeated this process 19 times
for both the honeycomb and grain growth templates, so that we obtained 19 different microstructures
of each type of template in each bin, for a total of 26,372 and 26,486 microstructures for each type of
template. The bins that were not reached are situated near the J0/J3 edge, which cannot be be reached
using finite microstructures, and near the J2 corner, which can technically be constructed using finite
microstructures, but which are apparently difficult to generate by random grain reorientations.
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Figure 2: The J-space encompasses every possible triple junction fraction. Each vertex represents microstructures with all
triple junctions of that respective type. Sample honeycomb microstructures are shown, with grain boundaries colored as
special (red) and general (gray). There are many configurations of special and general boundaries for each triple junction
fraction, of which these are examples.

2.2. RVE Characterization

Methods to determine RVE size include numerical and statistical approaches, as well as experimental
testing [3, 8, 40, 13, 26, 27]. Our strategy for determining the GBN RVE is based on stereological methods
and is depicted graphically in Fig. 3. For each microstructure, samples of increasing size were taken
at random locations (represented by the square regions with dashed boundaries in Fig. 3). The TJ
fractions were computed as the number of TJs of each type observed within the sample area divided by
the total number of TJs observed within the sample area. In stereological notation,

Ji = PP,i (1)

where PP,i denotes the point fraction (points/points) of TJs of the i-th type. The RVE size was defined
as the sample size—expressed in units of number of grains—for which all four TJ fractions of the sample
converged to the true value of the larger original microstructure. The criterion used for convergence was
the size at which the difference between the sample TJ fractions and those of the entire microstructure
was within a selected margin of error (1%, 2%, 5% and 10% were used), and where the TJ fractions of
every larger sample size were also within the margin of error.

Because TJ fractions can be, and frequently are, equal to zero, the typical definition of relative error
is undefined. However, since TJ fractions are by definition in the range [0, 1] the absolute error, which
is defined even when J true

i = 0, is also in [0, 1] and can be interpreted as a percentage, not relative to
the true value, but on the full scale of [0, 1]. We, therefore operationally define the margin of error used
to identify convergence as

margin of error =
∣∣∣J sample

i − J true
i

∣∣∣× 100 (2)

To account for the stochastic nature of the samples, we created a one-sided, non-parametric pre-
diction limit [41, 42] for the RVE size of each microstructure. The process described above for RVE
determination was repeated for 19 different microstructures in each bin across the J-space, and the
resulting RVEs were sorted in ascending order {RVE1...RVE19}. Without assuming anything about the
nature of the resulting distribution, a 20th repetition would have probability P = 1/20, or a 5% chance,
of having a value larger than RVE19, and a probability P = 19/20, or 95% chance of having a value less
than RVE19. We therefore operationally define the RVE size for a particular microstructure to be equal
to that of its corresponding RVE19 (as shown in Fig. 4).
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Figure 3: Samples of increasing size were taken at random locations throughout the microstructures. Each sample’s GBN
was analyzed and compared to the original GBN. This method was implemented for all microstructures and templates.

Figure 4: Illustration of the method used to define an RVE. Semitransparent colored lines are the TJ fractions of increas-
ingly sized samples for the 19 different microstructures. The envelope of all 19 curves is shown in black. The red dashed
lines correspond to the limits of the 2% error margin, and the dashed blue lines show where each TJ fraction converges.
The highest number of grains at which one of the fractions converged was defined as the RVE.
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The 19 different microstructures in each bin were generated via the Simulated Annealing procedure.
For the grain growth templates a unique template was used for each of the 19 microstructures (the same
19 templates were used for every bin). The honeycomb templates have only a single configuration, so
this universal honeycomb template was used 19 times for each bin.

RVE sizes for crystallographic texture were also determined using a similar method (see Fig. 5). A
3, 000 × 3, 000 grid of points, referred to as “point probes” in stereological parlance, was placed over
the microstructure and each point probe was assigned the orientation of the grain in which it fell.
This grid resembles the type of data acquired during a typical electron back-scatter diffraction (EBSD)
scan, or the type of data collected during classical stereological examination of optical micrographs
using reticles with superimposed point grids. Samples of increasing size were again taken at random
locations in the microstructures. To avoid edge effects, samples were not taken within a distance
of two average grain diameters from the edge of the sample. The space of grain orientations was
discretized into 20 bins1, and a discrete representation of the orientation distribution function (ODF)
was calculated as the fraction of point probes within the sample whose orientations belonged to each
bin (thus explicitly accounting for the effect and distribution of grain sizes), which we denote by ODF =
{fi | fi = PP,i ∀ i ∈ [1, 20]}.This definition is intentionally similar to that used for the triple junction
fractions to facilitate direct comparison of the results. We note also that it is one of the fundamental
relations of stereology, VV = AA = PP , that the point fraction is an unbiased estimate of both the
area fraction and volume fraction [44–47] (note that this justifies the present approach, as well as the
traditional use of EBSD point data to estimate an ODF). The size of the texture RVE was defined to
be the smallest sample size for which the fraction of point probes (i.e. the probability of observing an
orientation) in all of the bins matched that of the entire microstructure, to within the chosen margin of
error. This procedure is essentially identical to that employed for the GBN, except that 20 orientation
bins were employed instead of the 4 bins that defined the TJ types.

2.3. SVE Characterization

A similar method was used when characterizing SVE sets for each microstructure. An SVE set is
composed of samples whose aggregate (either average or total) structure and/or properties are repre-
sentative of the larger original microstructure. Thus, any sample size can be used to construct an SVE
set if the cardinality of (i.e. the number of samples in) the set is large enough. Consequently, an RVE
can be thought of as a special case of an SVE, whose corresponding set cardinality is equal to 1.

For reasons that will be explained in Section 3.5, we define the TJ fractions and texture of the SVE
set according to

Ji = P SVE
P,i =

∑K
k=1Ni,k∑K
k=1Nk

(3)

fi = P SVE
P,i =

∑K
k=1Ni,k∑K
k=1Nk

(4)

where Ni,k denotes the number of points (either TJs or texture point probes, with the context distin-
guishing between the two in order to avoid overburdensome notation) of the i-th type observed within
the k-th element of the SVE set, Nk denotes the total number of points (of all types) observed within the

1We experimented with a variety of discretizations, including the Freedman-Diaconis rule [43], which typically suggested
around 45 bins. A higher number of bins (a higher resolution discretization) allows a more precise representation of the
ODF, but at the cost of increasing the noise in the observed RVE trends. We selected a resolution of 20 bins in an effort
to balance these competing objectives.
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Figure 5: Illustration of the process for determining the RVE size for texture. In (a) the full microstructure is shown,
together with its discrete orientation distribution function (above). In (b) a small sample taken from the center of the
full microstructure is shown, together with its discrete orientation distribution function (above). In (b) the grid of point
probes is clearly visible.

k-th element of the SVE set, and K denotes the SVE set cardinality. For each predetermined sample
size considered, we defined the corresponding SVE set cardinality, K, as the number of samples for
which the TJ fractions (or texture) of the entire set (Eqs. (3) and (4)) converged to those of the corre-
sponding microstructure, using the same convergence criteria as described above for RVEs. Prediction
upper-limits were again created for each bin in the J-space. The predetermined SVE sample sizes that
were employed consisted of approximately 5, 10, 20, 50, 100, 500, and 1000 grains respectively.

The only significant methodological difference between the RVE and SVE calculation was in the
placement of samples within the full microstructure. With increasing sample size the probability that
some randomly placed samples overlap becomes non-negligible. For the RVEs, data from different
samples is never combined and so the possibility of overlapping samples has no material impact on
the results. For the SVEs, however, the data from different samples is combined and convergence
depends on the union of a set of samples. If samples overlap, the union can be biased (e.g. a particular
feature may be over-represented if it occurs in multiple samples) and in fact, in some cases, we observed
that if randomly placed samples were used the set union may converge to the wrong values (texture
or TJ fractions). Consequently, for SVE calculations, the microstructure was divided into a grid of
non-overlapping samples, which were selected uniformly at random. This procedure also guarantees
convergence because in the limit of using all of the non-overlapping samples, one has essentially used
the entire microstructure. As shown in Section 3.2, SVE convergence occurred in all cases using only a
small fraction of the available samples.
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Figure 6: Grain growth polycrystal RVE results (with a 10% margin of error) for (left) the GBN and (right) crystallographic
texture. The top and bottom rows show two different views of the J-space so that all faces of the tetrahedron are visible.
Points labeled (A) and (B) indicate the largest and smallest GBN RVEs. Points labeled (C) and (D) indicate the largest
and smallest texture RVEs. The corresponding microstructures are shown in Fig. 7. In the color legend, “log” refers to
the base-10 logarithm.

3. Results and Discussion

3.1. RVE Sizes for Grain Boundary Networks and Texture

3.1.1. Trends over the J-Space

Figure 6(a) shows the GBN RVE results (with a 10% margin of error) for each bin in the J-space for
the grain growth templates. As expected, microstructures in bins near the vertices of the J-space have low
GBN RVE sizes, especially near the J0 and J1 vertices. These microstructures consist predominantly
of one type of TJ, so it is easier for a smaller random sample to be representative. Away from the
vertices, there is a clear trend of increasing RVE sizes toward the J0–J3 edge, where microstructures
are made up of mostly type 0 and type 3 TJs. This trend can be explained by considering the feasible
microstructural configurations that inhabit the J0–J3 edge. Since type 0 and type 3 TJs cannot share
a GB, it is only possible to approach the J0–J3 edge in the limit of infinite-sized microstructures [48]
having TJ types segregated in such a way that the fraction of TJs lying on the interface between type
0 and type 3 regions (themselves being type 1 or type 2 TJs) asymptotically vanishes with increasing
microstructure size. Consequently, convergence would require the RVE to approach the (infinite) size of
the full microstructure.

For crystallographic texture (Fig. 6(b)), both the trends and sizes of RVEs across the J-space are
noticeably different. The texture RVEs increase in size towards the J3 corner, and are smallest across the
J0–J1–J2 plane. This trend is somewhat counterintuitive since an obvious example of a microstructure
having J3 = 1 would be a single crystal, which would have an extremely small RVE. The explana-
tion, which will be given in Section 3.1.2, lies in consideration of the configurational entropy in the
microstructure.

3.1.2. Microstructures of the Largest and Smallest RVEs

Figure 7 shows the microstructures corresponding to the largest and smallest RVEs for both GBNs
and texture (the corresponding locations in the J-space are indicated in Fig. 6).
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Figure 7: Microstructures of the largest and smallest RVEs for GBN and texture, corresponding to the points indicated
in Fig. 6 (shown at 4× magnification—each frame shows about 6,250 grains, which represents a view of about 6.25% of
the full respective microstructure). In the top row only the TJs are plotted, and they are colored by their TJ type. In the
bottom row, the grains are colored by their crystallographic orientation.

The microstructure of the largest GBN RVE (3,887 grains) has TJs that appear phase-separated
into pure J0 and pure J3 phases with J1 and J2 type TJs at the interface. To achieve this, the texture
also phase-separated into a phase having similar orientations internally (and therefore having nearly all
low-angle GBs, which results in the pure J3 TJ phase in the same region) and a phase having dissimilar
orientations internally (and therefore having nearly all high-angle GBs, which results in the pure J0
TJ phase in the same region). The texture RVE for this bin in the J-space is of an intermediate size
(305 grains), relative to other texture RVEs, and is more than an order of magnitude smaller than the
corresponding GBN RVE.

The microstructure of the smallest GBN RVE (7 grains) has a GBN consisting of nearly all J0 type
TJs. As shown in Fig. 8, the texture for this microstructure (in fact for all A-C) is uniform. The texture
RVE for this bin is larger than the GBN RVE (150 grains), but is small on the scale of other texture
RVEs.

As mentioned previously, the largest texture RVE (1,065 grains) occurs near the J3 corner, which is
counterintuitive because a simple example of a microstructure with all type 3 TJs is a single crystal,
which would have a very small RVE (both for texture and GBN). However, a single crystal is a state
with extremely low configurational entropy. Consequently, the Monte Carlo procedure used to generate
these microstructures has negligible probability of encountering a single crystal state. The number of
polycrystalline configurations that have nearly all type 3 TJs is much larger, and consequently the
configurational entropy for an equivalent polycrystalline state is much greater and these are the states
that the Monte Carlo procedure will therefore encounter. It is also worth recalling that the RVE sizes
presented are the 95% prediction upper limit, which is defined as the largest RVE of 19 microstructural
realization in a given bin. This means that even if a single crystal state had been included in the set of
19 microstructures in this bin, it would not change the RVE size of this bin. To achieve a polycrystalline
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Figure 8: (a) Orientation distribution functions (ODFs) and (b) GB disorientation distribution functions for each of the
microstructures shown in Fig. 7.

microstructural configuration with nearly all type 3 TJs, Fig. 7 shows that this microstructure consists
of clusters of similar orientation (essentially the microstructure has tried to locally become a single
crystal, and this is one of the many polycrystalline local minima in the configuration space). While
the ODF for this texture is uniform like the others (see Fig. 8(a)), there are clearly much longer-range
spatial correlations than with the other textures, which leads to the much larger texture RVE even
though the global macro-texture is the same. Evidence of this spatial correlation also appears in the
form of the strong peak that is visible in the disorientation angle distribution for small disorientation
angles (Fig. 8(b)). The GBN of this microstructure consists of a matrix of J3 TJs containing a dilute
concentration of stringy chains of J1 TJs that terminate in J0 and J2 TJs. The GBN RVE for this bin
is intermediate in size (141 grains) compared to other GBN RVEs and is nearly an order of magnitude
smaller than the corresponding texture RVE.

The microstructure of the smallest texture RVE (73 grains) has a texture that visually appears very
similar to that of the smallest GBN RVE (microstructure B in Fig. 7) and their ODFs are essentially
indistinguishable. Both of these microstructures inhabit the J0–J1–J2 plane, and, as shown in Fig. 6(b),
all of the microstructures occupying that plane have very low texture RVE sizes.

Although the ODFs are similar, the TJ characteristics across the J0–J1–J2 plane vary significantly
as do the GBN RVE sizes. Consideration of the disorientation angle distribution (Fig. 8(b)) reveals
that the spatial correlations in microstructure D are much weaker than in microstructure B, as the
disorientation angle distribution is much more uniform for microstructure D than for microstructure
B. The GBN of this microstructure consists of a nearly 50/50 mixture of type 0 and type 1 TJs. As
observed by Frary et. al [30], this kind of TJ distribution leads to a GBN configuration that prefers
mixing rather than phase-separation, which is what we also observe. This also explains the stark contrast
between the GBN of microstructure D and microstructure A, both visually and quantitatively. Both
consist of a 50/50 mixture of two types of TJs. However, in microstructure A these were type 0 and
type 3 TJs, which cannot share a GB—and this is the reason for the phase-separation behavior (they
are essentially “immiscible” TJ types)—whereas in microstructure D these are type 1 and type 0 TJs,
which can share a GB—and this is the reason for the mixing behavior (they are highly miscible TJ
types). This mixing behavior is the reason that the GBN RVE for this bin (200 grains) is much smaller
than that of microstructure A.
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Figure 9: Comparison of RVE sizes found for the grain growth templates to those for the honeycomb templates, for both
GBN and texture. The dashed line represents a 1:1 correspondence.

3.1.3. Comparison of Grain Growth and Honeycomb Templates

Figure 9 shows the RVE sizes obtained using the grain growth templates compared to those found for
the idealized honeycomb templates for both GBN and texture. For GBNs the RVE sizes are comparable,
though the grain growth templates had on average a small bias for being smaller than the corresponding
honeycomb templates (between 51%–56%—depending on the margin of error—of the grain growth
templates had smaller RVEs than the corresponding honeycomb templates).

In contrast, for texture 94%–97% of the grain growth templates had larger RVEs than their honey-
comb counterparts, and between 39%–57% of the grain growth templates are at least 50% bigger (i.e. it is
both the frequency and magnitude that are significant). This suggests that—at least when TJ fractions
defined by the low-angle/high-angle definition of special vs. general GBs are the relevant microstruc-
tural feature—the commonly employed honeycomb idealization may be a satisfactory approximation,
but when texture is a relevant microstructural feature, this idealization is likely unsatisfactory.

The reason that the texture is more significantly affected by this idealization than the GBN can
probably be attributed to the higher dispersion in the grain size distribution (ratio of standard deviation
to mean of 0.7672) than the distribution of the number of TJs per grain for the grain growth templates
(ratio of standard deviation to mean of 0.2108), while maintaining an almost identical average grain
size and average number of TJs per grain as the honeycomb templates. Stated another way, the more
realistic grain growth templates are topologically very similar to the idealized honeycomb templates,
but geometrically quite distinct. Consequently, for the remainder of this work, we focus on the results
for the grain growth templates.

3.1.4. Comparison of GBN and Texture RVE Sizes

Figure 10(a) shows the cumulative distribution function (CDF) of RVE sizes over the J-space for
both GBN and texture for all margins of error. This view allows one to select an RVE size depending
on the required accuracy (margin of error) and precision (how much of the distribution of RVE sizes
over the J-space it will be representative of—or in other words, if the TJ distribution is not known a
priori, how conservative one desires to be). For example, if a 10% margin of error is desired, an RVE
size of 441 grains would be expected to be sufficient for 80% of the J-space for the GBN, or 231 grains
for texture.

One important observation from Fig. 10(a) is that, while two of the four examples shown in Fig. 7
had larger RVEs for texture than for the GBN, across the full J-space most bins (between 63%–82% as
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Figure 10: (a) Cumulative distribution function (CDF) of RVE sizes over the J-space for both GBN and texture, which
shows the fraction of bins in the J-space with an RVE size less than or equal to a given value. Solid lines are for GBN,
dashed lines are for texture, and colors indicate the margin of error. (b) Survival function of the ratio of GBN RVE size
to texture RVE size, which shows the fraction of bins in the J-space for which the GBN RVE is at least a given percentage
larger than the corresponding texture RVE (this simultaneously quantifies how often GBN RVEs are larger than texture
RVEs and by how much). The horizontal limits are restricted to 100%–500% for the sake of visual clarity. There is only
one line style because the data represents the ratio of GBN and texture RVE sizes. (c) P th percentile RVE size as a
function of margin of error, for P ∈ {50, 75, 90}. Both axes are logarithmically scaled, but the horizontal axis limits cover
a single decade. The median is the 50th percentile (green), higher percentile RVE sizes are also shown to enable users to
select a more conservative size if desired. The GBN 50th percentile markers are difficult to see as they fall almost exactly
underneath the Texture 90th percentile markers.

indicated by the vertical intercept in Fig. 10(b)) have a larger RVE for the GBN than for texture. To
quantify both how often the GBN RVEs are larger than the texture RVEs and by how much, Fig. 10(b)
shows the survival function of the ratio of GBN RVE size to texture RVE size. This data suggests
that the trend of GBN RVE size being larger than texture RVE size is both general and of significant
magnitude. For example, between 11%–20% of the J-space have GBN RVEs that are at least 3 times
as large as the corresponding texture RVE, 28%–39% are at least twice as large, and nearly half of
the space (39%–54% of the bins) have GBN RVEs that are at least 50% larger than the corresponding
texture RVE. This suggests that the length-scale of heterogeneity (which is effectively what the size of
an RVE is dictated by) for GBNs is naturally significantly larger than for texture. This has important
implications relative to materials science research, as it suggests that the use of RVE sizes that are
appropriate for texture—which have been studied in the literature—will generally be quite inadequate
for the study of GBNs.

We note in passing that PDFs corresponding to the CDFs shown in Fig. 10(a) are approximately
log-normal, but with slightly heavier tails.

In Section 3.1.1 we described the trends in RVE size over the J-space. However, in the design
phase of an experimental or computational research effort, one may not know a priori what type of
TJ fractions to expect in the samples that will be employed, but it will often be critical to prudently
choose an appropriate sample size so that the results obtained can be general rather than specific to the
idiosyncrasies of a particular sample. A reasonable starting place could be the median (50th percentile)
RVE size across the entire J-space. Figure 10(c) shows how the P th percentile RVE size varies with
margin of error for both GBNs and texture, for P ∈ {50, 75, 90}. The observed relationship is well
approximated by a power-law (note the approximate linearity on the log-log plot shown in Fig. 10(c)).
Several notable observations can be made from Figure 10(c).
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First, the power-law dependence of RVE size on margin of error implies that relatively small increases
in accuracy (i.e. reducing the margin of error) can require significant increases in sample size. Thus
accuracy, in this case, is expensive and results in an inevitable trade-off that must be made, highlighting
the importance of quantifying RVE size so that an optimal trade-off can be achieved.

Second, as can also be seen in Figs. 6 and 10(a), the median RVEs for GBNs are larger than for
texture, with the median GBN RVE for the grain growth templates being as much as 72% larger than
the median texture RVE (for a 2% margin of error). However, at larger margins of error the difference
is somewhat diminished, so that, as a useful heuristic, if 10% error is acceptable a conveniently small
RVE (about 200 grains) may be used for both texture and GBN sensitive applications. Table 1 lists
the numerical values for the median and maximum RVE sizes for GBNs and texture, for both the grain
growth and honeycomb templates. It is worth noting that the maximum RVE sizes for GBNs (for the
grain growth templates) are between 3.8–18.9 times as large as the median. Thus, the cost of being
extremely conservative (using the maximum RVE size over the J-space) is very high. In contrast, for
texture (again for the grain growth templates) the maximum RVE sizes are between 3.0–6.6 times as
large as the median: still a large increase, but this shows that the variation in RVE size for texture is
not as large as for GBNs.

Table 1: GBN and texture RVE sizes for the honeycomb and grain-growth templates. The maximum and median RVEs
spanning the J-space are listed for each respective margin of error. Values are given in units of number of grains.

Margin of Error
Honeycomb Grain Growth

GBN RVE Texture RVE GBN RVE Texture RVE

Max Median Max Median Max Median Max Median

1% 75,554 19,490 39,259 8,701 75,816 19,734 38,891 12,780
2% 48,701 5,920 14,440 2,323 50,184 6,041 16,708 3,508
5% 13,898 900 4,715 387 16,547 908 3,386 602
10% 4,575 210 723 99 3,887 206 1,065 161

3.2. Cardinality of SVE sets for GBNs and Texture

3.2.1. Trends over the J-Space

Figure 11 shows the SVE cardinality results using a 10 grain sample size (with a 10% margin of error)
for each bin in the J-space for the grain growth templates. As expected, the trends over the J-space are
similar to those for RVE sizes, though with slightly more noise in the case of texture.

Table 2 provides the numerical values of the median and maximum SVE cardinalities for each sample
size for a 1% and 10% margin of error.

3.2.2. Comparison of SVE Cardinality for GBNs and Texture

Figure 12(a)–(b) show the CDFs of SVE cardinality as a function of SVE sample size for both GBNs
and texture. As would be expected, as SVE sample size increases, the number of samples required
decreases. We find that SVE cardinality scales with the SVE sample size as a power law (note the
linearity of the contour lines on this doubly logarithmic plot), resulting in a dramatic increase in the
number of required samples as their size decreases. This power law breaks down for larger margins of
error at sufficiently large sample sizes (note the bending of the 10% margin of error contours above a
sample size of about 100 grains and the eventual saturation for 1000 grains) as the cardinality is integer
valued and cannot be less than 1.
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Figure 11: The cardinality of an SVE set, where the size of each sample is equivalent to approximately 10 grains, for grain
growth polycrystal templates (with a 10% margin of error) for (left) the GBN and (right) crystallographic texture. The
top and bottom rows show two different views of the J-space so that all faces of the tetrahedron are visible. In the color
legend, “log” refers to the base-10 logarithm.

Figure 12: Cumulative distribution function (CDF) of SVE cardinality over the J-space for both (a) GBNs and (b) texture
as a function of SVE sample size. The solid contour lines represent the CDF for a 1% margin of error, and the dashed
contours show the CDF for a 10% margin of error. (c) Survival function of the ratio of GBN SVE cardinality to Texture
SVE cardinality. Again, the solid contour lines are for a 1% margin of error, and the dashed contours are for a 10% margin
of error.
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Table 2: GBN and texture SVE cardinality for 1% and 10% margins of error for grain growth polycrystal templates.

SVE Size [# of grains]
1% Error 10% Error

GBN Cardinality Texture Cardinality GBN Cardinality Texture Cardinality

Max Median Max Median Max Median Max Median

5 8,577 2,180 2,260 1,045 142 23 41 15
10 4,586 1,141 1,590 624 113 12 24 9
20 2,912 579 955 344 60 6 17 5
50 1,296 236 481 155 36 3 10 3
100 712 120 417 81 17 2 6 2
500 124 24 67 17 5 1 2 1
1000 68 12 33 9 3 1 1 1

As the margin of error increases, fewer samples are required (note the downward shift of the contours
in Fig. 12(a)–(b) from 1% margin of error to 10% margin of error). As with the RVE sizes, we also
observe that the SVE cardinality scales as a power law with margin of error.

Again, to quantify how often the cardinality of the GBN SVEs is larger than for the texture SVEs
and by how much, Fig. 12(c) shows the survival function of the ratio of GBN SVE cardinality to texture
SVE cardinality, for each SVE size. This data suggests that GBN SVE cardinality is generally larger
than texture SVE cardinality, and that this trend is only weakly affected by SVE sample size (note the
nearly flat contours, particularly for the 1% margin of error). However, at larger margins of error and
the largest sample sizes, the cardinality of GBN and texture SVEs is essentially equal (note how the
10% margin of error contours converge for SVEs with 1000 grain sample sizes). As an example of the
frequency and magnitude of the difference between GBN and texture SVE cardinalities, for SVE sets
with a 10 grain (100 grain) sample size across all margins of error, between 11%–20% (6%–18%) of the
J-space have GBN SVE cardinalities that are at least 3 times as large as the corresponding texture SVE
cardinalities, 24%–43% (13%–34%) are at least twice as large, and 41%–63% (28%–49%) of the bins in
the J-space have GBN SVE cardinalities that are at least 50% larger than the corresponding texture
SVE cardinalities. For very small (5 grain) SVE sample sizes the cardinality ratio is slightly higher, and
for very large (1000 grain) SVE sample sizes the cardinality ratio is lower. The frequency and magnitude
of the GBN to texture SVE cardinality ratio is comparable to that of the GBN to texture RVE size
ratio (see Section 3.1.4 and Fig. 10).

3.3. Comparison of RVEs and SVEs

The data collected here for both RVEs and SVEs allows us to make a quantitative comparison of
the efficiency of using RVEs vs. SVEs for GBNs and texture. To do this, we compare the total number
of grains required to define an RVE to the total number of grains required for an SVE set—which is the
product of SVE sample size and SVE cardinality—for the same bin in the J-space. This allows us to
see the influence, if any, of SVE sample size. In this context, to determine under what circumstances it
is more beneficial to use an RVE or an SVE set we have simply to answer the question, “Which of the
two requires more grains?” If more grains are required for an RVE than for the corresponding SVE set
then it is more advantageous (efficient) to use an SVE set.

Figure 13 shows the survival functions for the ratio of the required number of grains for an RVE to
the required number of grains for an SVE set, for GBNs and texture. Several observations are notable.

First, when high accuracy is required (1% margin of error), it is almost always more efficient to
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Figure 13: Survival function for the ratio of RVE Size to the product of SVE size and cardinality for (a) GBNs and (b)
texture as a function of SVE sample size. Again, the solid contours are for a 1% margin of error, and the dashed contours
are for a 10% margin of error.

use an SVE set (for GBNs, between 92%–96% of the bins have an RVE that requires more grains than
the corresponding SVE set; for texture, the figure is 94%–100% depending on the SVE sample size).
For GBNs, this is essentially independent of SVE sample size (note the horizontal contours for the 1%
margin of error in Fig. 13(a)), whereas for texture (Fig. 13(b)), the efficiency of using an SVE compared
to an RVE grows as the SVE sample size decreases.

When a larger margin of error (10%) is permissible, the situation is quite different and the efficiency
of an SVE over an RVE depends strongly on the selected SVE sample size. For small sample sizes the
result is not significantly changed from the high accuracy (1% margin of error) case. However, for larger
sample sizes SVE sets begin to require significantly more grains in aggregate than the corresponding
RVE. It is important to note that this does not mean that an RVE becomes preferable to an SVE set
for a 10% margin of error. Rather, recall that the number of grains in the RVE is fixed, it is the number
of grains in the SVE set that is changing with SVE sample size; thus, the observed trend indicates only
that using large SVE sample sizes becomes undesirable. There is always, apparently, a small enough
SVE sample size for which an SVE set will require fewer grains than the corresponding RVE over the
vast majority of the J-space.

It may be surprising that the ratio of the required number of grains in an RVE to the required
number of grains in an SVE set deviates from unity (or 100%) at all. However, we note that the grains
sampled in an RVE are in a contiguous region of the microstructure, whereas an SVE set is composed
of samples from many non-contiguous regions of the microstructure. As a result, the diameter of an
SVE set will be strictly greater than or equal to the diameter of an RVE containing the same number
of grains (assuming the SVE elements are non-overlapping, as enforced in the present work). Thus, the
SVE set interrogates larger microstructural length-scales for the same number of grains, the corollary is
that an SVE set requires fewer grains to characterize the same microstructural length scale present in
an RVE. We suggest that this is the reason that SVE sets are more efficient than RVEs.

We note in passing that the fact that large SVEs can be undesirable is consistent with this hypothesis
because the diameter of a set of large SVEs may be much larger than the length-scale of heterogeneity
of the microstructure, meaning that more of the microstructure is measured than is necessary without
any additional gain in information (i.e. there are diminishing and eventually negative returns as the size
of SVE samples increase), so the potential efficiency of the non-contiguous sampling strategy intrinsic
to SVE sets is not well exploited by large SVEs.
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The number of grains required is a measure of the size of the problem to be solved (whether via
calculations from computer simulations, or experimental characterization). There is another important
consideration related to the efficiency of SVE sets vs. RVEs: the potential for parallelization. The use
of SVE sets presents what is referred to as an “embarassingly” or “pleasingly” parallel problem: every
sample in the set can be simulated/characterized independently of all of the others. Parallelization can
also be used for RVEs, but the problem is a distributed computing problem that requires communication
overhead. The potential for massive parallelization that SVEs provide is a significant additional benefit
for computational work. For experimental characterization this additional benefit is not likely to be as
large, because the simultaneous use of multiple experimental apparatuses (e.g. property measurement
equipment, or electron microscopes) to parallelize the measurement/characterization task is likely to be
limited to at most 2–3 duplicate pieces of equipment. Consequently, experimental resource constraints,
and the additional setup cost of each experiment, may actually justify the globally sub-optimal use of
an RVE instead of an SVE set in some experimental contexts. In either case, the findings presented
here may facilitate the strategic decision making process in the presence of these trade-offs, and in some
cases the required RVE size may be too large to be practical even for an experimental measurement, in
which case the results presented here can guide the researcher to select the number of samples required
for the sample size that is practical in a particular application (e.g. see Table 2).

3.4. Comparison to Experiment

The present work represents the first time that RVEs and SVEs have been determined for GBNs.
However, for texture, there are numerous studies in which RVEs have been determined, allowing us to
compare the values obtained here to those published in the literature. Methods for determination of
RVE sizes for texture vary widely and include convergence of the ODF or disorientation distribution
function (DDF) [27, 49, 50] and indirectly analyzing texture by instead determining convergence of mea-
sured properties (e.g. elasticity or fatigue) [51–53]. Convergence criteria (how one defines the point at
which a sample becomes “representative”) also vary between studies, including minimizing the difference
between EBSD and X-ray diffraction ODFs [54], minimizing deviation from known values (of structure
or properties) [50], and minimizing standard deviation from repeated measurements/simulations [3, 52].

Although the methods are diverse, texture RVE sizes2 determined from experimental measurements
are in the range of 101.4 grains to 104.0 grains [27, 49, 50, 54, 55], and texture RVE sizes determined
from simulation are in the range of 101.3 grains to 102.3 grains [51–53, 56–58]. In spite of the use of a
wide range of methods and convergence criteria in the literature, Table 3 shows that the texture RVE
sizes found in the present work span a similar range as those found in the literature and are therefore
consistent with prior work, and with experimentally determined RVE sizes.

3.5. Predictions for Three-Dimensional Microstructures

While the microstructures considered here were two-dimensional, the results may also be adapted for
fully three-dimensional microstructures under a broad range of conditions via stereological methods. To
extract three-dimensional RVE sizes and SVE cardinalities from the two-dimensional RVEs and SVEs
we must first establish the relationship between the two-dimensional microstructural characteristics
measured here (TJ fractions and texture) and their three-dimensional counterparts, and then we must

2Most of the RVE sizes quoted in the literature represent the number of grains in a 3D volume, which we denote
by N3D. To compare these values with the RVE sizes of the present work, which represent the number of grains in
2D microstructures, and which we denote by N2D, we have converted any literature values expressed as N3D to their
equivalent N2D by means of Eq. (14). However, regardless of whether or not this conversion is applied, the range of values
in the present work compares favorably with the range of values reported in the literature.
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Table 3: Range of grain growth RVE sizes for GBNs and Texture found in the present work for all margins of error.

Margin of Error
GBN RVE Texture RVE

Min Max Min Max

1% 102.9 104.9 103.9 104.6

2% 102.1 104.7 103.2 104.2

5% 101.5 104.2 102.5 103.5

10% 100.8 103.6 101.9 103.0

establish the relationship between the number of grains (our defined unit of RVE size) observed in a
plane section and the number of grains in a corresponding three-dimensional volume.

The fundamental relations of stereology allow quantitative measurement of certain three-dimensional
microstructural features from two-dimensional sections. In particular, an unbiased estimate of the total
length of triple junctions per unit volume (LV ) in a three-dimensional microstructure can be determined
from the expected value of the number of triple junction points per unit area (PA) that appear in an
ensemble (i.e. an SVE set) of two-dimensional samples according to [45]:

LV = 2 〈PA〉 (5)

where 〈·〉 denotes the expected value (ensemble average). As we are concerned with distinguishing
between different types of triple junctions, we can employ Eq. (5) to derive a relationship between
the two-dimensional triple-junction fractions (which are point fractions) used in this work and their
three-dimensional counterparts (which are length fractions):

J3D
i =

LV,i

LV

=
2 〈PA,i〉
2 〈PA〉

=
1
K

∑K
k=1Ni,k/A

1
K

∑K
k=1Nk/A

=

∑K
k=1Ni,k∑K
k=1Nk

(6)

where the subscript i distinguishes the respective length-per-unit-volume, number of points-per-unit-
area, and number of points of the i-th TJ type from the corresponding total values, and where we have
made use of the fact that all K elements of a fixed-size SVE set—as defined in the present work—have
equal areas. Comparison of Eq. (6) with Eq. (3) shows that

J3D
i = J2D

i (7)

indicating that the triple-junction number fractions measured from 2D SVE sets are unbiased estimators
of the triple-junction length fractions in the corresponding 3D microstructure. Although straightforward
to derive, we are not aware of this relationship having been derived previously in the literature. It is worth
noting that defining the two-dimensional TJ fractions according to the reasonable alternative, J2D

i =
〈Ni/N〉, would not exhibit this important property. It is therefore recommended to the community
that TJ fractions for 2D SVEs be defined according to Eq. (3), as done in the present work, so that
comparison to 3D microstructures can be made.

For crystallographic texture, we can derive a similar relation relating the three dimensional volume
fractions of each orientation bin (f 3D

i ) to the point fractions measured on two-dimensional planes (f 2D
i ),

which is one of the most ubiquitous of all metallurgical stereological measurements:

f 3D
i =

Vi
V

= VV,i = 〈PP,i〉 =
1

K

K∑
k=1

Ni,k

Nk

=

∑K
k=1Ni,k∑K
k=1Nk

(8)
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where the stereological notation VV,i denotes the volume fraction of the i-th orientation bin, PP,i denotes
the point fraction of the i-th orientation bin, and we have made use of (i) the fundamental sterological
identity VV = 〈PP 〉 [45–47], and (ii) the fact that all K elements of a fixed-size SVE set have an equal
number of point probes (i.e. all of the Nk are equal, and so

∑K
k=1Nk = KNk). Comparison of Eq. (8)

with Eq. (4) shows that
f 3D
i = f 2D

i (9)

indicating that textures measured from 2D SVE sets are unbiased estimators of the textures in the
corresponding 3D microstructure. Obviously, Eqs. (7) and (9) hold for RVEs also, which are just SVE
sets whose cardinality is equal to unity. Because Eqs. (7) and (9) apply to both the macroscopic
microstructure as well as the smaller samples which are used to determine the RVEs and SVEs, it
follows that convergence of the 2D samples to the macroscopic 2D microstructural statistics coincides
with convergence of the equivalent 3D samples to the macroscopic 3D microstructural statistics.

To convert the sizes of 2D RVEs and SVEs to their corresponding sizes in 3D, all that remains is
to determine the relationship between the number of grains in a 3D volume and the number of grains
observed on 2D planes that intersect that volume. Due to the fact that grains are not always convex, an
exact analytical solution to this problem is not currently available. However, analytical solutions can be
obtained for some of the space-filling convex tessellations commonly employed to model polycrystalline
microstructures. For convex objects we have [44–47]

NV = 〈NA〉 / 〈D〉 (10)

where NA is the number of grains per unit area, NV is the number of grains per unit volume, and 〈D〉 is
the mean caliper diameter of the grains (sometimes called the mean breadth, and alternatively denoted
〈B3〉). For a 3D Poisson-Voronoi tessellation (sometimes used to model polycrystalline microstructures)
an analytical expression for 〈D〉 can be obtained, yielding the relationship [46]

NV = C〈NA〉3/2 (11)

where C = 15
√
5

4
π−5/2

[
Γ
(
4
3

)]−3/2
. Because all elements of a fixed-size SVE have equal area, the ensemble

average of NA over an SVE set is given by 〈NA〉 = 〈N2D〉 /A, where N2D is the number of grains observed
in a 2D plane of area A. Substituting this into Eq. (11), and considering a cube-shaped volume of side
length L, we then have

N3D = NVL
3 = C

(
〈N2D〉
L2

)3/2

L3 = C〈N2D〉3/2 (12)

or
N3D ≈ 0.5680〈N2D〉3/2 (13)

Although an analytical expression is not available for the non-convex grains that exist in real poly-
crystals, a numerical approximation can be obtained. Using DREAM.3D [59], we simulated 42 three-
dimensional polycrystals with equiaxed grains having N3D ranging from about 18 grains to 72,929 grains
and determined N2D (which ranged from about 5 grains to about 1663 grains) for each of the six faces
of the cube shaped volume. The form of Eq. (13) is well obeyed, but with a different value for the
coefficient C. A fit to this data (see Fig. 14) yields

N3D ≈ 1.1502〈N2D〉3/2 (14)

Equation (14) provides the relationship necessary to convert between the size of 2D RVEs and SVEs in
terms of number of grains and their 3D counterparts.
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Figure 14: Comparison of the number of grains of realistic shape (i.e. non-convex) in a cube shaped volume (N3D) and
the number of grains appearing on its 2D faces (N2D). The markers are the average, 〈N2D〉, of all 6 cube faces, and the
error-bars represent one standard deviation. The solid red line is the fit of Eq. (12) to obtain the value of C = 1.1502 for
realistic (non-convex) grains. The dashed red lines (which fall nearly on top of the solid red line, indicating the excellent
quality of the fit) are the 95% confidence intervals for the fit.

The strength of the stereological approach is that it makes “no assumptions about the geometry
of the features being characterized” [45]. However, this requires that the elements of the SVE set are
collected in such a way that they are statistically representative of the three-dimensional material. If a
material consists of equiaxed grains then samples taken from a single plane are sufficient to characterize
the structure and the sizes/cardinalities of RVEs and SVEs found in the present work apply directly.

Because we have expressed the RVEs and SVEs in terms of number of grains rather than units that
have an explicit spatial scale (e.g. mm2), the sizes of RVEs and SVEs found in the present work also hold
for more general microstructures. In particular, the present results are also valid for 3D microstructures
with anisometric (non-equiaxed) grains—in such cases the shape of the RVE becomes a rectangular
prism (see Fig. 15)—and for microstructures with or without crystallographic texture. Thus there are
a wide range of 3D microstructures for which the present results apply.

Figure 15: Examples of 3D microstructures for which the present results apply. These include, but are not limited to
(a) isometric or equiaxed grains, (b) anisometric platelet shaped grains (shortened in one direction), and (c) anisometric
needle shaped grains (elongated in one direction). Note that all three examples contain the same number of grains, and
illustrate that if the grains are anisometric the RVE will be a rectangular prism.
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Examples of three-dimensional microstructures for which the sizes of RVEs and SVEs found in the
present work would not be guaranteed to apply are (i) heavily deformed microstructures in which grain
shapes deviate strongly from those considered here, and (ii) those possessing topological anisotropy3—
e.g. a microstructure in which the TJ fractions are different in different directions no matter what metric
scaling (Fig. 15) is applied, and which would therefore require 2D SVE elements taken from multiple
orientations.

4. Summary & Conclusions

The size of representative volume elements (RVEs) and the cardinality of statistical volume element
(SVE) sets for 2D grain boundary networks (GBNs) were determined using both idealized honeycomb
polycrystal models and more realistic polycrystal models resulting from front-tracking grain growth
simulations.

It was observed that the RVE size varies across the space of triple junction (TJ) fractions, increasing
as the TJ fraction approaches the J0–J3 edge. The size of RVEs for crystallographic texture were also
determined for the same set of polycrystals and were found in most cases to be substantially smaller.
However, the variations in RVE size across the space of TJ fractions were fundamentally different
for texture and GBNs, and consequently relatively rare cases exist for which a GBN RVE may be
smaller than the corresponding texture RVE, contrary to the general trend. Overall, depending on the
permissible margin of error, GBNs required RVEs that were larger than for texture in 63%–82% of our
observations, that were at least 50% larger than for texture in about half of our observations, and more
than 3 times larger in 11%–20% of our observations. This suggests that the trend of GBNs requiring
larger RVEs than for texture is significant in both frequency and magnitude.

The trend in the cardinality of SVE sets across the space of TJ fractions was qualitatively similar to
that of the RVE sizes for both GBNs and texture.

We find that RVE sizes based on the idealized honeycomb templates significantly under-predict the
texture RVE sizes for more realistic microstructures. However, the honeycomb idealization had on
average roughly the same GBN RVE size as the more realistic grain growth templates. The reason that
the GBN appears to be less negatively impacted by the honeycomb idealization was attributed to the
smaller relative dispersion of the number of triple junctions per grain compared to the dispersion in
the grain size distribution (i.e. the honeycomb template is topologically similar to realistic GBNs, but
geometrically quite distinct).

We also observe that the size of an RVE and the cardinality of an SVE set both scale as a power law
with the desired accuracy (the permissible margin of error). This suggests that the cost of increased
accuracy is significant, highlighting the need to quantify necessary RVE sizes and SVE set cardinalities.
In this context, the results of this work can help researchers to make an optimal trade-off between
computational expense/experimental effort and quantitative accuracy.

The SVE cardinality was also found to scale as a power law with SVE sample size.
The figures and tables contained in this work facilitate the selection of an appropriate RVE size or

cardinality of an SVE set for a given sample size, given a desired level of accuracy (margin of error
between 1%–10%) and precision (what proportion of the distribution of RVE sizes/SVE set cardinalities
over the J-space will be adequately represented).

To the best of the authors knowledge, this is the first time that RVEs and SVEs for GBNs have been
systematically characterized. The results highlight the fact that, in a single microstructure, one charac-

3The stereological approach is valid even in the presence of anisotropy, but in such chases a valid SVE set would need
to be constructed from samples taken from multiple orientations.
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teristic or feature can be homogeneous (e.g. crystallographic texture) at a particular length scale while
another is simultaneously heterogeneous (e.g. GBNs). The fact that GBN RVEs are substantially larger
than those for crystallographic texture, in the same microstructures, suggests that the characteristic
length-scale of heterogeneity in GBNs is most often naturally larger than for texture and special atten-
tion should be given to the choice of sample size when studying GBNs to ensure that results obtained
from simulations and conclusions based upon experimental characterization are truly representative.

For texture, comparison to prior literature shows that the RVE sizes calculated in the present work
are consistent with independently published values, and experimental measurements. As the present
work represents the first characterization of GBN RVEs and SVEs, data for such a comparison are not
yet available for GBNs.

Using stereological identities, we derived formulas (Eqs. (7), (9) and (14)) allowing for the prediction
of 3D RVE and SVE sizes from the 2D values calculated in the present work. We showed that the
present results can be adapted to 3D microstructures for a wide range of scenarios.

Here we summarize practical recommendations resulting from this work:

• The use of idealized honeycomb templates should generally be avoided, although this is more
important when crystallographic texture is of greatest concern than when GBNs are of primary
interest.

• Given the option, the use of an SVE set will always be more efficient than the use of an RVE for
both GBNs and texture. It appears that there is always an SVE sample size for which this is true.

• As a rule of thumb, if a margin of error of 10% is permissible, 12 samples is a good initial guess for
the cardinality of an SVE set for which each sample contains 10 grains (or 3 samples of 50 grains
each).

• For experimental work, resource constraints may in some cases justify the use of an RVE instead
of an SVE set (even though it is not the globally optimal solution in terms of efficiency). In this
case, the results presented here aid in the selection of an appropriate RVE size.

• As a rule of thumb, if a margin of error of 10% is permissible, a sample containing roughly 200
grains should be a good initial guess for the required size of an RVE for both GBNs and texture.

• When characterizing TJ fractions in 2D microstructures, it is recommended that they be defined
according to Eq. (3) to facilitate comparison with 3D microstructures.
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