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Abstract

Historically, attempts to correlate grain boundary (GB) structure and properties have relied on ex-
perimental measurements and computational calculations performed on bicrystals. While the resulting
data can be precise, it is usually severely limited in quantity due to the cost and/or computational
expense of sampling the full 5D GB character space. As a result, existing data is concentrated around
highly-symmetric sub-regions. In contrast, polycrystals are ubiquitous, inexpensive, and contain a broad
range of GB characters. However, extracting GB properties from the effective properties of polycrystals
requires the solution of an inverse problem. In this work, we present a Bayesian framework, that we
call GB property localization, to address both of these challenges by facilitating the inference of GB
structure-property models from indirect polycrystal measurements and severely limited data (i.e. when
the system is strongly underdetermined). The method naturally provides uncertainty quantification for
the resulting inferences. We present the results of validation tests using 1DOF and 3DOF structure-
property models for GB diffusivity in 2D (or columnar) microstructures, and we investigate the influence
of the number of observations and the number of grains in a polycrystal on the inference quality. We
identify a transition in the preferred type of data as a function of the number of observations: when
data is abundant bicrystals lead to more accurate inferences; however when data is severely limited,
polycrystals may provide more accurate results.

Keywords: Grain Boundary, Structure-Property Model, Inference, Uncertainty Quantification, Inverse
Problem

1. Introduction

Attempts to determine grain boundary (GB) structure-property models have historically relied on
experiments or atomistic calculations performed on bicrystals [1–10]. This direct approach gives the
researcher high confidence in the measured/calculated properties of a single type of GB, however, the
number of direct measurements required to adequately sample the 5D GB character space is rarely
available. Rohrer, et al. estimated that to obtain even a 10◦ resolution (which is quite coarse), a grid
over a fundamental zone (FZ) of the 5D GB character space for cubic crystals, would require 6.5× 103

GBs [11]. If the desired resolution decreases to 5◦ (still coarse, but more useful for property prediction
and modeling efforts) the number of required GBs increases to 2× 105 [11]. In contrast, most catalogs
of calculated GB properties presently consist of on the order of 102 GBs [1, 2, 12]. The large number
of required measurements/calculations combined with the high cost of those measurements/calculations
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suggests that the problem of estimating a 5DOF GB structure-property model is likely to be heavily
underdetermined1 for the foreseeable future, and emphasizes the need for high-throughput measure-
ments/calculations.

One approach to increasing the throughput of measurements is to employ polycrystalline samples.
Such samples can include large numbers of GBs, but often only effective, or aggregate, macroscopic
properties can be measured, so that resolution of the GB properties requires the solution of an inverse
problem.

The work of Bulatov et al. [13] is an example of another possible approach to determine a 5DOF
structure-property model. In that work, GB energies calculated via molecular dynamics for 388 bicrystals
were used to fit 63 parameters of a closed-form geometrical expression or ansatz for GB energy. For
many GB properties, however, an appropriate analytical ansatz is not yet known and a non-parametric2

approach such as the inference method presented here may be preferable. Moreover, if the system is
underdetermined, or the available data consists of homogenized effective property measurements from
polycrystals an approach such as the one presented in this work may be necessary.

In a companion paper to this work [14] (which we will refer to as Paper I), we addressed the question:
“If I only have access to polycrystals, would it be possible to use them to infer GB structure-property
models?” Paper I answered this question in the affirmative for situations in which the number of
measurements exceeds the number of parameters to be inferred (the overdetermined case), and provided
methods to solve the necessary inverse problem. However, even using polycrystalline samples, the
number of measurements that can be made will be limited, and realistic situations are often likely to be
underdetermined.

In this work, the methods of Paper I are extended to the more challenging underdetermined case,
in which we solve the inverse problem of inferring a GB structure-property model from measurements
of polycrystal properties, when the number of measurements is far less than the number of model
parameters to be inferred. While the focus is specifically on polycrystals, the methods presented here
apply also to bicrystal data, if one has access to it, as well as mixtures of polycrystal and bicrystal data.

In the present work we focus on inferring a model for GB diffusivity; however, these inference
methods are quite general and apply for any measurable GB property. While we explicitly consider
only 2D microstructures with 1DOF and 3DOF structure-property models, the methods presented are
applicable to fully 3D microstructures and 5DOF structure-property models.

2. Methods

The general approach to solving an underdetermined inverse problem has been well-studied in the
field of geostatistics where, e.g., models for sub-surface density distributions are inferred from shock-
wave arrival times [15–19]. We will primarily follow methods developed by Tarantola et al. [20–26],
with necessary adaptations for GBs and the relevant homogenization equations for GB diffusivity in
polycrystals.

1By underdetermined, we mean that the number of data or measurements (knowns) is less than the number of param-
eters (unknowns) to be inferred.

2While the method presented here does indeed involve the use of “parameters” the method is still considered non-
parametric for two reasons: (1) the “parameters” result from the use of discretization, which is not an essential element of
the method and is used purely for convenience (the method applies for equivalent infinite dimensional functional problems);
(2) in contrast to traditional methods that specify an analytical ansatz whose shape is modified by a small number of
constants/parameters, the “parameters” in this work simply constitute the values of the inferred function evaluated at an
arbitrary large number of specified points.
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Figure 1: Representative 2D microstructures with (a) 2, (b) 30, and (c) 100 grains, respectively. Grains are colored
according to the inverse pole figure (IPF) at right. The diffusion flux is specified to be from left to right and in the plane
of the microstructure as shown.

We perform validation testing for the proposed method using simulated microstructures (similar
to those generated in Paper I). Our methods for the creation of a diverse set of microstructures and
diffusivity homogenization for GB networks are provided in Section 2.1 and Section 2.2 respectively. In
Section 3 we demonstrate the effectiveness of the proposed methods for inferring GB structure-property
models and discuss the influence of the number of measurements and polycrystal size on the inference
quality.

2.1. Microstructures

Two-dimensional microstructures with between 2-100 grains were generated according to the pro-
cedure described in Paper I (see Fig. 1) using an isotropic, front-tracking, grain growth simulation.
The microstructures having fewer than 20 grains were generated by randomly cropping 500 grain mi-
crostructures that had themselves been produced by the standard procedure. For each number of grains
a separate pool of 1771 microstructures were generated and grain orientations were assigned via a di-
rected Monte Carlo procedure such that each pool of microstructures spanned the majority of the triple
junction configuration space [27–30] (hereafter referred to as the J-space).

It is worth noting that experimental triple junction fractions typically inhabit a relatively small por-
tion of this space [31]. Consequently, it is likely that the microstructural diversity presented by these
pools of microstructures exceeds that of representative volume elements (RVEs) of typical experimental
samples. This may be somewhat ameliorated by the fact that we repeat the inference process multiple
times with different randomly selected subsets of microstructures (some of which are highly diverse and
others less so), and the quality metrics we report represent the average of these repeated trials. It is
also important to acknowledge the significant experimental challenge both of (i) synthesizing and char-
acterizing large numbers of samples (even for polycrystals) and (ii) promoting microstructural diversity.
However, it may be possible to enhance the experimentally accessible microstructural diversity in at
least two ways.

The first approach involves considering samples that do not constitute an RVE. This will produce
samples that have different properties due to statistical fluctuations—cut an RVE into smaller samples
and there will be variation in the properties of the sub-samples. Critchfield and Johnson [32] recently
reported RVE sizes for GB networks, which may assist in selecting an appropriately sized sample that
balances the desired statistical variability—afforded by having few grains—with ease of fabrication,
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handling, and characterization for materials with typical grain sizes. Annealing treatments can also be
used to induce intentional grain growth so that large samples (easily handled) with few grains can be
fabricated.

A second approach to achieve microstructural diversity experimentally is through variation in pro-
cessing parameters to produce samples with differing microstructural statistics (crystallographic tex-
ture, grain boundary character distribution, etc.). In this case RVEs can be used, but because they
were processed differently they will exhibit statistically distinct microstructures with different proper-
ties (the properties of two RVEs having different crystallographic textures—e.g. fiber texture vs. random
texture—will be distinct even though both are RVEs). Due to practical challenges of producing samples
from a wide array of processing routes, we anticipate that the first approach may be easier than the
second.

While it is beyond the scope of the present work, we suggest that it would be valuable for future
work to investigate the impact of microstructural diversity on inference quality. One additional benefit
of such a study may be the implications it might have for optimal experimental designs [33].

2.2. Homogenization (The Forward Problem)

A detailed derivation of our homogenization approach for GB network diffusivity is given in [34] and
Paper I, so only a brief explanation is provided here. Given a known structure-property model for GB
diffusivity, D , and the GB network Laplacian, L(M), for the microstructure M , the effective diffusivity
of the GB network can be calculated via

D̄pred(D ,M) = −L
A
Lᵀ
b L̂
−1eb (1)

where L is the length of the microstructure in the direction parallel to the flux, A is the cross-sectional
area orthogonal to the flux, ei is a vector having the i-th element equal to 1 and all others equal to 0,
and the index b denotes the “sink” node in the network to which the flux flows. The overbar denotes
that this represents the effective diffusivity of the full GB network. We consider conditions for which
“Type C” kinetics [35] prevail, where diffusion is limited to the GBs (bulk diffusion is negligible).

To validate our inference approach, we consider two different hypothetical structure-property mod-
els for D (see Section 3). For each model, we apply Eq. 1 to all observed microstructures, M =
{M1,M2, . . . ,MNobs

}, to obtain the corresponding homogenized effective diffusivity of the GB network,
D̄obs =

{
D̄obs

1 , D̄obs
2 , . . . , D̄obs

Nobs

}
, where D̄obs

n includes noise added according to

ln
(
D̄obs

)
= ln

(
D̄pred

)
+ ε (2)

with ε ∼ N [0, (ln(f 2 + 1))1/2] and f = 0.01 indicating an assumed noise level of 1%.
The quantities, M and D̄obs represent the observed data. The inference problem consists of finding

the most probable model given these observations. Validation then consists of comparing the inferred
model of D to the known model. We note, in passing, that it is also possible to include the uncertainty
of M due to the finite resolution of the chosen characterization technique (e.g. EBSD), however this
uncertainty is negligible compared to the uncertainty in typical measurements of D̄obs, and consequently
we do not consider it here.

2.3. GB Property Localization (The Inverse Problem)

2.3.1. Preliminaries

GB property localization is the inverse problem of inferring a GB structure-property model from
measurements. These measurements may be indirect measurements of the macroscopic properties of
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polycrystals and/or direct measurements of the properties of individual GBs or bicrystals. The mathe-
matical foundation of GB property localization is based on the conjunction of probability distributions
defined on (i) the data space (denoted d), (ii) the model space (denoted m), and (iii) the theoretical
relationship between the two. The general result is [20]

σm(m) = kρm(m)

∫
d

ρd(d) θ(d |m)

µd(d)
dd (3)

where m ∈ m and d ∈ d denote the set of model and data parameters3, respectively; ρα(α) denotes
the a priori probability density over α (i.e. the prior information we have on α); θ is a conditional
distribution that describes the theoretical relationship between d and m; µα(α) is the homogeneous
distribution over α, and k is a normalization constant. The end result is σm(m), which denotes the a
posteriori probability density over the model space, quantifying what we know about the model space
given our observations and prior information, and represents the most general solution to the inverse
problem.

If m and d are linear spaces and the priors are assumed to be Gaussian, then σm(m) will also be
Gaussian and Eq. 3 takes the particularly simple form [20]

σm(m) = k exp

(
−1

2
S(m)

)
(4)

where
S(m) = (g(m)− d0)

ᵀC−1d0
(g(m)− d0) + (m−m0)

ᵀC−1m0
(m−m0) (5)

is referred to as the misfit function. In Eq. 5 d0 and Cd0 are the mean and the covariance operator
defining the Gaussian prior on the data space, ρd(d), and represent the measured data together with
their estimated uncertainty. Likewise, m0 and Cm0 are the mean and the covariance operator defining
the Gaussian prior on the model space, ρm(m), and represent the prior model and its corresponding
uncertainty. The functional g(m) is the non-linear map between the model space and the data space;
in materials science parlance we would refer to this functional as a homogenization equation.

While, as mentioned already, the distribution σm(m) is itself the solution to the inverse problem, one
often seeks a single model rather than a distribution over the model space. A natural choice is the model
that maximizes the a posteriori probability density (often referred to as the maximum a posteriori or
MAP estimate). Because σm(m) is Gaussian, it has a single maximum, corresponding to the minimum
of S(m), which occurs at [20, 24, 26]

m̃ = m0 + Cm0G
∗(Cd0 + GCm0G

∗)−1(d0 − g(m̃) + G (m̃−m0)) (6)

and the a posteriori covariance operator is given by [20, 24, 26]

Cm̃ =
(
I−Cm0G

∗(Cd0 + GCm0G
∗)−1G

)
Cm0 (7)

where (·)∗ denotes the adjoint of (·) and G is the Fréchet derivative operator, evaluated at m̃. In general,
the Fréchet derivative evaluated at a point m is defined by [20]

Gδm = g(m + δm)− g(m) (8)

3The term “parameters” should be understood in an abstract sense. For example, m may represent a set, a vector, or,
as in the present context a function m(x).
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where δm is a small perturbation.
Equation 6 is an implicit equation (note that m̃ appears on both the right- and left-hand sides, and

that G depends on m̃), and can be solved by an iterative fixed-point method [24]:

m̃k+1 = m0 + Cm0G
∗
k(Cd0 + GkCm0G

∗
k)
−1(d0 − g(m̃k) + Gk (m̃k −m0)) (9)

where Gk denotes the the Fréchet derivative evaluated at m̃k. The solution is independent of the starting
point, but the rate of convergence may be affected by it. As a rule, we choose the prior model m0 as
the starting point, and convergence typically occurs within a very small number of iterations (often
only 3-5). In some of our initial tests we observed an occasional oscillatory behavior of Eq. 9 near
the minimum. Consequently, we chose a hybrid approach in which a few iterations of the fixed-point
algorithm (Eq. 9) were followed by the following steepest-descent algorithm [20]:

m̃k+1 = mk − µk
(
Cm0G

∗
kC
−1
d0

(g(m̃k)− d0) + (m̃k −m0)
)

(10)

where µk is a step size that can be optimized to minimize the misfit along the direction of steepest
descent. This hybrid approach combines the quick convergence of Eq. 9 along with the smooth behavior
of Eq. 10.

2.3.2. Problem–Specific Considerations

For the present problem of inferring a structure-property model for GB diffusivity, we define each of
the quantities mentioned in Section 2.3.1 as follows4

m = ln(D) (11)

d0 = ln
(
D̄obs

)
(12)

g(m) = ln
(
D̄pred(D ,M)

)
= ln

(
D̄pred(em,M)

) (13)

The logarithmic transformations employed permit the definition of Gaussian distributions since m,d, g(m) ∈
(−∞,∞), whereas (under most circumstances) D , D̄obs, D̄pred(D ,M) ∈ [0,∞), which would not be con-
sistent with the domain of a Gaussian distribution. It is straightforward to verify that with these
definitions m ∈ m and d ∈ d are linear spaces. It is not obvious, however, that g(m) is linear.

Strict linearity is not required for the simplifications leading to Eq. 4 to hold. As long as g(m) is “not
too non-linear” (and this is a rather flexible constraint) then σm(m) will still be approximately Gaussian.
To verify that g(m) is “not too non-linear”, we performed numerical tests in which two models, mA

and mB, were introduced into Eq. 13 and we compared g(mA + mB) to g(mA) + g(mB) with a variety
of test functions having contrast ratios spanning many orders of magnitude. Figure 2 illustrates that
g(m) is approximately affine-linear, meaning that g(mA + mB) ∝ g(mA) + g(mB). Evidence that this
constitutes sufficiently linearity is furnished by the successful validation results presented in Section 3.

There are a variety of possible choices for the covariance operators in Eq. 5. For the data covariance
we use

Cd0 :
(
ln
(
f 2 + 1

))
δij (14)

where f = 0.01, and as is apparent from this definition, Cd0 is a discrete linear operator due to the fact
that we have a discrete set of observations.

4Any reference to the logarithm of diffusivity implicitly assumes a prior division by 1 m2/s so that the argument to
the logarithm is unitless. Correspondingly, when the quantity m is exponentiated, the result is implicitly multiplied by
1 m2/s to obtain the correct units for diffusivity.
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Figure 2: The effect of property contrast on the linearity of the homogenization equation. For (a) & (b) the test functions
span 1 order of magnitude (a contrast ratio of 10). For (c) & (d) a contrast ratio of 109 is employed. The functional g(m)
is linear in m if g(mA + mB) = g(mA) + g(mB). The results in (b) and (d) suggest that the homogenization equation
used, while not exactly linear, is approximately affine-linear, and that this holds across a broad range of contrast ratios.
In addition to the exponential and cosine functions used in this example, other models for mA and mB were tested and
the results were essentially unchanged.

For the model covariance function, we select a Gaussian covariance operator of the form

Cm0 : Cm0(x,x
′) = σ2

m0
exp

(
− d2(x,x′)

2`2

)
(15)

where x and x′ are two points in the domain of m (the GB character space, or a subspace of it); σm0 is
the standard deviation (a scalar constant and the chosen measure of model uncertainty)5; ` is a length-
scale over which we expect the function m to be smooth (for the present work6 we choose a value of 5◦);
and d2(x,x′) is the squared distance between points x and x′. The model covariance function (Eq. 15)
encodes the soft constraint from our prior knowledge that GBs that are crystallographically similar (as
defined by the their distance, d2(x,x′), relative to the length scale `) should have similar properties.

In this work, we consider 1DOF GB structure-property models, in which the GB diffusivity is a
function of only the disorientation angle D(ω), as well as 3DOF GB structure-property models, in
which the GB diffusivity is a function of all three disorientation parameters D(ω, θ, φ) with θ and φ
defining the polar and azimuthal angles of the disorientation axis. For the 1D structure property model
x ≡ ω, and the covariance operator defined in Eq. 15 is positive definite, which is required for the

5not to be confused with the posterior distribution σm(m)
6It is common in Bayesian inference problems to perform hyper-parameter optimization to select values for parameters

like `. However, caution should be taken to prevent over-fitting on limited data with non-physical parameter values. For
example, on tests with sparse data, hyper-parameter optimization produced “optimal” values of ` as large as 45◦ or more,
which would impose artificially strong correlations between very dissimilar GBs. We suggest that when physical intuition
is available to inform the choice of ` it is preferable to unsupervised hyper-parameter optimization.
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resolution of the inverse problem.
However, for the 3DOF case x ≡ q(ω, θ, φ) is the quaternion representing the disorientation (using an

active rotation convention) and d2(x,x′) is the squared distance between two disorientations, which we
take as the square of the minimum rotation angle between two disorientations among all symmetrically
equivalent pairs of misorientations:

d(q,q′) = min
i,j,k
l,m,n

2 arccos
((

sj
−1qisk

)−1(
sm
−1q′lsn

))
(16)

where sa is the quaternion representation of the a-th symmetry operator of the corresponding disorienta-
tion, and qi ∈ {q,q−1} and q′l ∈

{
q′, (q′)−1

}
also include grain-exchange symmetry [36] for each of the

disorientations. This distance metric is not Euclidean and consequently the corresponding covariance
operator, Cm(q,q′), is not guaranteed to be positive definite [37]. This problem arises in many fields
when covariance operators are defined using non-Euclidean distance metrics [37], and a variety of solu-
tions have been proposed. We employ the program nearestSPD [38], which uses Higham’s method [39]
of finding the unique nearest symmetric positive semi-definite matrix (in the Frobenius norm) and then
adding a small perturbation of the form εI, where ε is some small positive constant.

2.3.3. Uncertainty Quantification

One of the advantages of this probabilistic framework is that uncertainty quantification is a natural
result of the process. The uncertainty in the MAP estimate of the GB structure-property model is
quantitatively described by the posterior covariance operator, Cm, defined in Eq. 7. To present this in
a way that is familiar, we extract the standard deviation of m(x) at each point x from the posterior
covariance operator according to

σm(x) =
√
Cm(x,x) (17)

The inferred model can then be presented with typical error bars showing one standard deviation as
defined by m(x) ± σm(x). Remembering that m(x) represents the log-transformation of D(x), we can
rewrite the uncertainty interval lower and upper limits as

exp(m(x)− σm(x)) = exp(m(x))/ exp(σm(x)) (18)

exp(m(x) + σm(x)) = exp(m(x)) exp(σm(x)) (19)

And recognizing

D(x) = exp(m(x)) (20)

σD(x) = exp(σm(x)) (21)

the uncertainty scatter interval for D(x) can be expressed compactly as D(x)> σD(x), where > indicates
“multiply-or-divide” instead of “plus-or-minus”. This means that when the uncertainty in the inferred
model is expressed in terms of σD(x) one should remember that it is multiplicative, not additive.

2.3.4. Validation

As the objective of this work is to evaluate the potential of the proposed method of inferring GB
structure-property models when only limited and possibly indirect data is available, we use several
methods to evaluate the quality of the inferred models. Two of these (misfit and resolving power) are
general and will be applicable to actual inferences performed when the true model is not known, and
one (median absolute error) is specific to this validation study and involves comparison of the inference
to the true model. We define each of these here.
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The misfit has already been defined in Eq. 5. Note that from the Bayesian viewpoint, the function
m is considered a random variable. Consequently, the value of the misfit function at the MAP point,
S(m̃), is also a random variable, and, for linear inverse problems, S(m̃) is distributed according to a χ2

distribution with the same number of degrees of freedom as there are observations, Nobs [20]. For inverse
problems that are approximately linear, this is still approximately true. Since the expected value of a
χ2 distribution with Nobs degrees of freedom is Nobs, this furnishes us with a way to evaluate the quality
of the inference: the misfit of the inferred model should be close to Nobs. Hence, when plotting results
that compare inferences using different number of observations (Figs. 5 and 8), we will normalize the
value of the misfit function by Nobs, so that inferences with a normalized misfit near unity are expected
regardless of the number of observations. This should be understood as a rough way to evaluate both
the degree to which the inference result is consistent with the observations and prior assumptions, and
how well the inference process has converged. Extremely large deviations from this expected value would
suggest a possible inconsistency in the a priori assumptions (e.g. Gaussian priors) or an overestimation
of prior uncertainties [20].

We define resolving power as the relative reduction in uncertainty when comparing the posterior dis-
tribution to the prior distribution overm. This is a measure of the amount of information learned by the
inference process, or how much the data has enabled us to resolve the inverse problem. Mathematically,
we can express this as

RP =

∫
X
σ2
m(x)− σ2

m0
(x) dx∫

X
σ2
m0

(x) dx
(22)

The resolving power is 0 if the uncertainty is unchanged during the inference, and 1 if the posterior
model has 0 uncertainty. For practical computations we replace the integral with a finite summation of
the discretized values

RP ≈
∑

i σ
2
m(xi)− σ2

m0
(xi)∑

j σ
2
m0

(xj)
(23)

To compare the inferred models to the true model, we employ the median absolute error

MedAE = median (|m̃−mtrue|) (24)

This provides a measure of the average prediction error using the inferred model.

3. Results & Discussion

The 1DOF and 3DOF models employed to validate our inference approach are shown in Fig. 3.
Both models exhibit cusps, which are anticipated to be characteristic features of any GB structure-
property model (see e.g. [13]). During the 2D microstructure generation described in Section 2.1, cubic
crystal symmetry was assumed. Microstructures intended to be used with the 1DOF model had grain
orientations assigned all sharing a common [100] rotation axis. Consequently, GB disorientation angles
for this model inhabit ω ∈ [0◦, 45◦] as is apparent from the domain of Fig. 3(a). Microstructures intended
for use with the 3DOF model had grain orientations assigned from the full cubic orientation FZ, so that
the possible GB disorientations inhabit the full cubic misorientation FZ shown in Fig. 3(b).

For each inference, the prior model (or initial guess), m0 was chosen to be a constant with a value
in the middle of the expected range of values (such might be a reasonable estimate based on existing
measurements or literature values of single-crystal and “general” GB properties), and the uncertainty,
σm0 , was set to half this range (see Fig. 4).

Many inferences were performed to determine the influence of the number of grains, Ngrains, and
the number of observations, Nobs, on the quality of the inference. In preliminary testing we observed
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Figure 3: “True” diffusivity models that were used to test the inference method. (a) shows the 1DOF model based solely
on the disorientation angle ω and (b) shows a 3DOF model based on the disorientation angle and axis (represented here
in the cubic misorientation FZ in Rodriguez space).

for Ngrains & 100 several quantities became nearly independent of Ngrains. For example, in 1DOF in-
ferences with 10 observations, microstructures with 1000 grains—which approach the size of the GB
network RVEs computed in [32]—had median absolute errors of 0.095 ± 0.024, compared to the 100
grain microstructures reported here that exhibited median absolute errors of 0.094 ± 0.039. Never-
theless, in some situations dependence on Ngrains was observed for even higher values. In an effort to
balance observation of important trends with computational efficiency, we present inference results for
Ngrains ∈ [2, 100], in steps of 1 for Ngrains ≤ 19 and steps of 10 for Ngrains ≥ 20. For the 1DOF case we
considered Nobs ∈ [2, 100] (any more observations would make the system overdetermined), and for the
3DOF case we considered Nobs ∈ [2, 300]. For each inference Ngrains was first fixed and then a subset
of microstructures was chosen uniformly at random from the candidate pool of 1771 microstructures
(described in Section 2.1) for that number of grains. This process was repeated 10 times and the median
value of each of the quality metrics across the 10 replications for every combination of Ngrains and Nobs

is reported. Figure 5 and Figure 8 show results for all tested combinations.

3.1. 1DOF Results

For the 1DOF inferences, the disorientation angle domain of ω ∈ [0◦, 45◦] was discretized into 100
points, so that the model parameters to be inferred consisted of the logarithm of the function values
at each of these points: m = ln ([D (ω1) ,D (ω2) , . . . ]

ᵀ). A few representative inferences are shown in
(Fig. 4).

As expected the quality of inferences increases with Nobs (compare e.g. Fig. 4(a) and (c)). This trend
is reproduced over the full set of test conditions shown in Fig. 5(b). However, Fig. 4 also illustrates
important differences between the inference results produced by bicrystal data and polycrystal data (i.e.
the effect of Ngrains).

In Fig. 4(a) the posterior estimate is accurate and the posterior uncertainty is dramatically reduced
only in the vicinity of the 5 bicrystal observations. Away from these points (e.g. ω . 5◦) the posterior
estimate and uncertainty are indistinguishable from the priors. In contrast, with the same number of
polycrystal observations Fig. 4(b) shows improved estimates and reduced uncertainty across the entire
domain. This suggests that, for the same number of observations, with bicrystal data we learn a lot
about a small region of the space, whereas with polycrystal data what we learn is spread over a more
diffuse region.

For a 1DOF structure-property model, one could remedy the highly localized knowledge of bicrystals
by means of a regular (as opposed to random) sampling strategy, evenly spacing bicrystals across the
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Figure 4: Four representative inferences, A, B, C & D which correspond to the A,B,C & D labels on Fig. 5. The four
examples are the inferences that result from A: 5 bicrystal observations, B: 5 polycrystal (10 Grain) observations, C: 50
bicrystal observations, and D: 50 large polycrystal (100 Grain) observations. The histograms above each plot represent
the distribution (probability density) of GBs present in each pool of observations.

Figure 5: Contour plots of (a) resolving power (see Eq. 23), (b) median absolute error (see Eq. 24) between the inference
and the true model, and (c) the normalized misfit of the inferred model (see Eq. 5 and Section 2.3.4). Annotations A, B,
C & D correspond to the inferences shown in Fig. 4
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domain to maximize information gain. However, as the dimensionality of the structure-property model
increases, the curse of dimensionality makes it difficult to employ such a regular sampling strategy and
in the 5DOF case, if bicrystals are employed exclusively, there will almost certainly be large gaps in the
data resulting in the behavior exhibited in Fig. 4(a).

It is also noteworthy to compare Fig. 4(c) and (d). Both have a large number of observations
(Nobs = 50), but (c) is for bicrystals and (d) is for polycrystals with 100 grains. The bicrystal inference
is notably more accurate and has a reduced uncertainty even though the polycrystals have a much more
extensive sampling of the space (compare the associated histograms). We attribute this effect to the fact
that as Ngrains increases the sampling improves, but so does the number of degenerate configurations
(i.e. the number of different structure-property models that could produce the same observed effective
diffusivity). This suggests that if bicrystal data can be had in abundance, it will always be preferred—one
would always choose abundant data with low uncertainty over abundant data with larger uncertainty.
However, in many cases data is limited or costly and a trade-off must be made between data abundance
and uncertainty, as will be discussed in more detail below.

It is interesting to note that in Fig. 5(a) the resolving power depends strongly on Nobs, but is almost
completely independent of Ngrains. This suggests that while the spatial distribution of what we learn is
different for bicrystal and polycrystals, the amount that we learn is comparable.

One additional observation from Fig. 5(b) is that the accuracy of the inference appears to be much
more sensitive to the quantity of data (Nobs) than the type of data (Ngrains), and for a fixed value of
Nobs inferences of comparable accuracy can be achieved over the entire range of Ngrains that was tested.

While the tests we performed involved sets of microstructures having a uniform value of Ngrains, the
methods we have presented are in no way restricted to homogeneous data sets, but are perfectly capable
of handling heterogeneous data sets composed of a mixture of bicrystals and polycrystals of any size or
shape. Indeed we suggest that this is likely preferred to leverage the strengths of the different kinds of
data: the polycrystals providing an inexpensive survey over the space and the bicrystals enhancing the
resolution near GBs of interest (e.g. high-symmetry points in the space).

3.2. 3DOF Results

For the 3DOF inferences, we chose to visually represent the inference results over a mesh-based
discretization of the Rodriguez space [40], with 43,914 tetrahedra and 8,406 vertices as shown in Fig. 6.
In this context the model parameters to be inferred consisted of the logarithm of the function values at
each of these 8,406 vertices: m = ln ([D (ω1) ,D (ω2) , . . . ]

ᵀ). Barycentric interpolation [41] (via Matlab’s
pointLocation() function) was used to evaluate g(mk) in Eqs. 9 and 10 at each iteration.

Figure 6: The cubic misorientation FZ discretized into 43,914 tetrahedra with 8,406 vertices for use in the 3DOF inferences.

We note that with 8,406 model parameters to infer, even when we consider 300 observations, the
system is severely underdetermined and yet meaningful inferences can be made.
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Three example inferences are shown in Fig. 7, including (Ngrains, Nobs) = (2, 300), (10, 300), (100, 100).
As in the 1DOF tests, 10 inference replications were performed for each combination of Nobs and Ngrains,
and the results are presented in Fig. 8.

The trends in the 3DOF results are qualitatively similar to those from the 1DOF inferences, namely
the strong dependence on Nobs, the weak dependence on Ngrains, and the fact that uncertainty is larger in
regions where observations are absent (note the bottom left edge of the bicrystal inference in Fig. 7(a)),
which occur more often with bicrystal data.

There are also some notable differences between the 3DOF and 1DOF results. In the 3DOF case,
more bicrystals are needed to achieve the same resolving power—for a resolving power of 0.8 about 70
bicrystal observations were needed in the 3DOF case, whereas only 7 were required in the 1DOF case—
however, this represents a reduction in the number of observations required per dimension (compare
701/3 ≈ 4 for 3DOF to 7 for the 1DOF case). We attribute this to the spatial sharing of information: in
1D an observation can only affect the region to its left and right, whereas in 3D an observation provides
information about a 3D neighborhood surrounding it so that more is learned per observation.

Comparing Fig. 5(b) and Fig. 8(b), it is also apparent that in the 3DOF case more observations are
required to obtain the same level of accuracy as the 1DOF case. There is also a stronger dependence
of the inference accuracy (MedAE) on Ngrains in the 3DOF case. Moreover, the effect of Ngrains appears
to depend on the value of Nobs. For Nobs . 15, inference accuracy increases with Ngrains, while for
Nobs & 15 there is a modest decrease of accuracy with increasing Ngrains.

Perhaps the most notable difference between the 3DOF results and the 1DOF results is the clear
emergence of a transition between a data-sparse region where polycrystalline observations are preferred
to the data-rich region where bicrystals are preferred. Figure 9 shows a set of slices through the contour
plots of Figs. 5 and 8. For the 1DOF case the accuracy of the inferences is roughly the same for all
Ngrains below about Nobs = 5. For the 3DOF case, polycrystals with increasing Ngrains outperform the
bicrystals up to about Nobs = 20. As mentioned previously, when observations are abundant, direct
bicrystal measurements are always preferred. However, it appears that there is a regime in which if the
number of observations is sufficiently limited, polycrystalline samples will provide comparable accuracy
or even outperform bicrystal data.

Moreover, the location of this transition varies with dimensionality. If we linearly extrapolate to the
full 5DOF case, this would suggest that bicrystals would outperform polycrystals only when Nobs & 35.
On the other hand, bicrystals are typically more difficult and expensive to synthesize than polycrystals,
so that when cost and efficiency are also considered the regime over which polycrystals are preferred
may be considerably larger than simply the range of Nobs over which they outperform bicrystals for
inference accuracy.

4. Conclusion

In this work we presented a method for inferring GB structure-property models from the effective
properties of polycrystals or bicrystals with rigorously quantified uncertainty, when the number of mea-
surements is smaller than the number of model parameters to be inferred (the underdetermined case).
We performed validation tests for both 1DOF and 3DOF structure-property models for GB diffusivity
in 2D (or columnar) microstructures.

We investigated the influence of the number of grains (Ngrains) in a polycrystal and the number of
observations (Nobs) on the quality of the inference. We found that inferences are far more sensitive to
Nobs than Ngrains, so that for a fixed value of Nobs, inferences of roughly equivalent resolving power can
be obtained for microstructures over the entire range of Ngrains that was investigated ([2, 100]). For the
1DOF structure-property model, inference accuracy was also largely insensitive to Ngrains over the tested
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Figure 7: Three representative inferences corresponding to the points labeled A,B, & C in Fig. 8. In (a) 300 bicrystal
observations were used, (b) is for 300 polycrystal observations with 10 grains each, and (c) shows the inference from
100 polycrystal observations with 100 grains each. From left-to right we show a scatter plot of GBs present in the set of
observations, the resulting inference, and the posterior uncertainty. As a reminder, the uncertainty values are multiplicative
(D > σD), so they are unitless and a value of 1.0 would represent zero uncertainty. The true model is shown in Fig. 3.
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Figure 8: Contour plots of (a) resolving power (see Eq. 23), (b) median absolute error (see Eq. 24) between the inference
and the true model, and (c) the normalized misfit of the inferred model (see Eq. 5 and Section 2.3.4). Annotations A, B,
& C correspond to the inferences shown in Fig. 7.

Figure 9: Median Absolute Error vs. Nobs for several values of Ngrains, for both (a) 1DOF and (b) 3DOF inferences. Plots
represent vertical slices through Fig. 5 and Fig. 8, respectively. Semitransparent envelopes represent the interquartile
range of the data.
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range. For the 3DOF structure-property model the effect of Ngrains depends on Nobs. For Nobs . 15,
inference accuracy increases with Ngrains, while above Nobs & 15 there is a modest decrease of accuracy
with increasing Ngrains.

We also found that when observations are abundant, bicrystals produce inferences with greater
accuracy (lower median absolute error). However, we observed a transition where at low values of Nobs,
inferences with equivalent (1DOF) or greater (3DOF) accuracy were obtained with polycrystals. The
location of this transition appears to increase with the dimensionality of the structure property model,
such that for the full 5DOF case we anticipate that the data-limited regime where polycrystals are
preferred for accuracy alone is likely to increase. Moreover, when additionally considering the reduced
cost and complexity of synthesizing polycrystals, the regime over which polycrystals are preferred is
likely to be much larger.

The results presented here employed 2D microstructures with diverse triple junction populations.
While the methods presented apply to microstructures and structure-property models of arbitrary di-
mension, several factors may influence the sensitivity of the inferences to Nobs and/or Ngrains, including:
changes in the connectivity of GBs for 3D microstructures, and the degree of microstructural diversity
available. These will be an important aspect to investigate in future work.
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