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Abstract

In this work we present a non-parametric Bayesian approach for developing structure-property models
for grain boundaries (GBs) with built-in uncertainty quantification (UQ). Using this method we infer a
structure-property model for H diffusivity in [100] tilt GBs in Ni at 700 K based on molecular dynamics
(MD) data. Once a GB structure-property model is developed, it can be used as an input to mesoscale
simulations of the effective properties of polycrystals, microstructure evolution, etc. A significant ad-
vantage of the Bayesian approach presented here is that it facilitates propagation of uncertainties from
the underlying structure-property model to the output predictions from mesoscale modeling. Leveraging
this capability, we perform mesoscale simulations of the effective diffusivity of polycrystals to investi-
gate the interaction between structure-property model uncertainties and GB network structure. We
observe a fundamental interaction between crystallographic correlations and spatial correlations in GB
networks that causes certain types of microstructures (those with large populations of J2- and J3-type
triple junctions) to exhibit intrinsically larger uncertainty in their effective properties.

Keywords: Grain Boundary, Structure-Property Model, Bayesian Inference, Uncertainty
Quantification, Uncertainty Propagation

1. Introduction

In attempting to develop structure-property
models for grain boundaries (GBs), one is faced
with several challenges, including: (i) the amount
of available data is often small compared to the size
of the GB character space; (ii) the existing data
has finite accuracy and precision (i.e. it contains
some amount of uncertainty); and (iii) the func-
tional form of the structure-property model is gen-
erally unknown.

Data insufficiency is a perennial challenge for
GBs because of the size of the 5D GB character
space and the relatively high cost of GB charac-
terization and property measurement (whether ex-
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perimentally or computationally). The most com-
monly employed databases contain on the order of
102 GBs [1, 2]. In contrast, Rohrer et al. predicted
that for cubic materials the number of GBs in a 5◦

grid over the GB character space would be on the
order of 105 [3].

Although less frequently discussed than data
quantity, the accuracy and precision of GB data
is also of critical importance. All observations of
GB properties, whether from calculations or from
experimental observations, contain some degree of
both epistemic and aleatoric uncertainties. The de-
velopment of robust and reliable structure-property
models requires that such uncertainties be incorpo-
rated and inform model predictions and their inter-
pretation.

With regard to the functional form of GB
structure-property models, this is still largely an
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Table 1: Summary of datasets employed in this work. All datasets are for Ni. Simulation methods include molecular
statics (MS) and molecular dynamics (MD). For DS01 each of the MD simulations yielded one diffusion coefficient for the
bulk and one for the respective GB.

Dataset Property GBs Method Reference

DS01 H Diffusivity 26 [100] symmetric tilts MD [4]
26 bulk

DS02 GB Energy 40 [100] asymmetric and symmetric tilts MS [5, 6]
DS03 GB Energy 4 [100] symmetric tilts MS [1]

open question. Read and Shockley developed a
classical model to predict GB energy for low-
angle GBs (LAGBs) [7]. Recently, an interpo-
lation function based on the functional form of
the Read-Shockley model was developed to predict
GB energy for the full 5D GB character space for
FCC metals [8]. However, for the vast majority
of GB properties, physical theories have not yet
been developed to predict the functional form of
the structure-property model. Consequently, even
when GB property data is available, in most cases
a corresponding physically motivated parametric
model whose coefficients can be fit to the data does
not exist.

Bayesian inference techniques are an attractive
option to address these challenges because they (i)
can handle underdetermined systems; (ii) naturally
incorporate data and modelization uncertainties;
and (iii) can be formulated in a non-parametric
way.

In the geostatistics community, Bayesian infer-
ence has been applied heavily. For example, in
seismic tomography, models for the sub-surface
geological structure of the earth (e.g. spatially
resolved material composition) are reconstructed
from travel times of seismic waves [9–12]. There are
many parallels between such geophysical problems
and the present problem of inferring GB structure-
property models, including: measurements are of-
ten severely limited in number (due to cost and
infrastructure) and contain uncertainty from a va-
riety of sources, and an analytical ansatz for the
model form may not be available. Consequently,
probabilistic approaches have been developed that
can handle limited data (even severely underde-
termined systems) [13, 14], and can infer contin-

uous models from discrete data [13, 14], in non-
parametric ways (i.e. they do not require any
ansatz of the model form) [14, 15]. Gaussian pro-
cess regression methods [16–20], currently popular
in machine learning applications, are a special case
of these more general methods.

In this work, we adapt Bayesian techniques from
the geostatistics community to provide a method to
infer GB structure-property models and apply this
approach to obtain a structure-property model for
H diffusivity in [100] tilt GBs in Ni at 700 K with
quantified uncertainty. We then use this model to
perform uncertainty propagation in mesoscale sim-
ulations of GB network diffusivity in polycrystals
to investigate the interaction between structure-
property model uncertainty and GB network struc-
ture.

2. Methods

2.1. Datasets

For our structure-property model inference, we
combine several datasets including our own calcu-
lations as well as other datasets published in the
literature (see Table 1). The first dataset (DS01)
consists of both bulk and GB hydrogen diffusivity
values for 26 [100] symmetric tilt GBs in Ni, calcu-
lated via molecular dynamics (MD) [4].

In the same reference [4], we recently demon-
strated that hydrogen diffusivity in Ni GBs can be
predicted from the corresponding 0 K GB energy
via an extension of the Borisov relation [21–23],
with appropriately calibrated parameters. This en-
ables us to expand our pool of data to leverage GB
energy data, which is much more ubiquitous than
direct diffusivity values. Therefore, we also em-
ploy several datasets containing GB energy values
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for [100] tilt GBs, including our own [5, 6] (DS02),
and other extant datasets from the literature [1]
(DS03). In Appendix A we describe our process
for predicting GB diffusivity from GB energy with
quantified uncertainty.

2.2. Data Uncertainty

The Bayesian inference approach we employ re-
quires the specification of measurement/calculation
uncertainty for all of the input data.

2.2.1. Diffusivity

For the direct MD diffusivity data (DS01), the
diffusivity is calculated from the mean-squared-
displacement (MSD), 〈R2〉, of the hydrogen atoms
over time according to (see, e.g., [24])

D =
1

6

d 〈R2〉
dt

(1)

In this case, the aleatoric (stochastic) uncertainty
can be quantified via a bootstrapping method in
which the total simulation time is divided into dis-
joint sub-intervals and the diffusivity is determined
in each of these sub-intervals [25]. Figure 1 illus-
trates this process and shows the distribution of dif-
fusivity values obtained in this manner for a 12.7◦

[100] symmetric tilt GB. We use 5 disjoint sub-
intervals over the last half of the simulation time
so as to avoid the standard initial non-linear tran-
sient. Figure 2 shows the distribution of diffusivity
values thus obtained for all of the 26 [100] symmet-
ric tilt GBs in dataset DS01.

The epistemic (modeling) uncertainty for MSD
calculations is due primarily to the interatomic po-
tential employed. Comparisons of calculated val-
ues to experiments reveal that MSD diffusivities
for H in FCC metals are often about 2 times higher
than experimentally measured values [4, 26]. At
the same time, typical aleatoric uncertainties in
experimental measurements are themselves on the
order of 5 % – 65 % [27–30], and for the listed refer-
ences the mean uncertainty is 25 %. In contrast the
aleatoric uncertainties in our own MSD calculations
of GB diffusivity are in the range 3 % – 15 %, with
the mean uncertainty being 7.5 %. While the MSD
results are more precise, it is not obvious whether
the experimentally measured or calculated values

Figure 1: Illustration of the bootstrapping process to obtain
estimates of bulk and GB diffusion coefficients and their
corresponding uncertainty from MD simulations. The slope
of MSD vs. t in each sub-interval provides an estimate of
the diffusion coefficient. The uncertainty is calculated from
the resulting distribution (see inset).

are more accurate. Moreover, the epistemic un-
certainty arising from the discrepancy between cal-
culated and measured values is generally not well
represented by a distribution [25], and has not yet
been sufficiently well quantified to be considered.
Consequently, we will neglect this epistemic uncer-
tainty. If one desires, the final results can be scaled
to compensate for the discrepancy between calcu-
lated and experimental values, depending on which
of the two the user believes to be more accurate.

2.2.2. Energy

For the MD GB energy data, sources of error
include the interatomic potential, and the mini-
mization procedure. Unfortunately, uncertainty in
GB energy is rarely reported. For symmetric tilt
GBs in UO2, Ksibi et. al report GB energy un-
certainties of 2.4 % – 4 % at 1700 K [31]. For Ni
at 0 K (the present system), explicit uncertainties
are not available; however, several authors suggest
that errors on the order of 5 % – 10 % are reason-
able [8, 32]. Consequently, we assume a conser-
vative uncertainty of 10 % for all MD GB energy
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Figure 2: Diffusion coefficients for the 26 [100] symmetric tilt GBs in DS01, together with quantified uncertainty.

values. Rohrer, et al. compared MD GB energies
to experimentally measured GB energies and found
good agreement for those GBs that were well rep-
resented in both datasets [32]. They also suggest
that because the MD GB energies do not depend
on observation frequency (unlike the experimental
values in their comparison), they may be more re-
liable than the experimental values. Nevertheless,
there are certainly important outstanding questions
about, e.g. the impact of metastable GB states
at finite temperatures in experimental samples and
other differences between the conditions simulated
in MD and those present in experimental measure-
ments that likely impact the epistemic uncertainty
of both types of data. Again, because suitable esti-
mates are not yet available, we ignore any epistemic
uncertainty of the MD data.

2.3. Modeling Uncertainties

One important additional point must be made
regarding uncertainties. For both diffusivity and
energy data, the uncertainty is almost universally
reported in the form ±f where f is either an abso-
lute error or a percent error. This representation of
the uncertainty implicitly assumes that the errors
are Gaussian (or at least come from a symmetric
distribution). This is, however, inconsistent with
the nature of the properties being measured since
both GB diffusivity and energy are non-negative
and a Gaussian distribution assigns finite probabil-
ity to negative values. In reality the uncertainties
in these properties must come from an asymmet-

ric distribution whose support is R ≥ 0, such as
the log-normal distribution1. However, when the
dispersion is small the log-normal distribution ap-
proaches a normal distribution and we have that
P ∼ Lognormal(µ, σ2) ≈ N (m, s2), where P is the
measured property of interest (energy, γ, or diffu-
sivity, D), and the notation a ∼ B denotes that the
random variable a follows a B distribution.

If m is the reported mean property value, and
s = fm is the reported standard deviation, where
f is the percent error (i.e. m ± (f · 100)%), the
parameters of the corresponding log-normal distri-
bution are given by

µ = ln

(
m√
f 2 + 1

)
(2)

σ =
√

ln(f 2 + 1) (3)

The above distinction is not merely pedantic. If in-
ference is performed, incorrectly assuming that the
uncertainties in diffusivity or energy are Gaussian,
models sampled from the posterior will yield non-
physical negative values. To enforce the physical
constraint of non-negativity for these properties,
log-normal priors will be used2. At the same time,

1Technically the support of the log-normal distribution is
R > 0, but the range of diffusivity values typically observed
makes this point practically irrelevant.

2Technically any distribution whose support is in R ≥ 0
may be used, but, as will be explained later, the choice of a
log-normal distribution—if it is appropriate—is particularly
convenient.
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Gaussian distributions furnish a number of conve-
nient closed-form results that make the inference
process highly efficient. To satisfy the physical con-
straints of non-negativity and also take advantage
of the convenient machinery of Gaussian distribu-
tions, the entire problem can be log-transformed by
making use of the fact that if P ∼ Lognormal(µ, σ2)
then lnP ∼ N (µ, σ2). Rather than performing in-
ference on D and γ directly, we therefore perform
the inference on lnD and ln γ, and we convert re-
ported uncertainty values in the form ±f to the
desired form by means of Eq. 3.

2.4. Inference

Our inference approach is based on the Bayesian
methods of Tarantola, et al. [11–15, 33, 34]. A de-
tailed derivation is provided in our recent work [35].
We provide a brief summary here.

We will use bold font to abstractly denote any
non-scalar objects including functions, operators,
vectors, matrices, and sets. For example, m de-
notes the function m (ω, β), which may be imple-
mented numerically as the vector defined by mi =
m (ωi, βi); and C denotes the operator C(x,x′),
which may be implemented numerically as the ma-
trix defined by Cij = C

(
xi,x

′
j

)
.

Let D = D(ω, β) be the unknown structure-
property model describing the diffusivity of [100]
tilt GBs, where ω and β are the independent vari-
ables describing the GB misorientation and plane
inclination, to be defined more explicitly later. We
wish to infer D from observations of the diffusiv-
ity, Dobs =

{
Dobs

1 , Dobs
2 , . . . , Dobs

N

}
, and crystallog-

raphy, M = {M1,M2, . . . ,MN}, of some number,
N , of GBs, where Dobs

n is the diffusivity of the n-
th GB characterized by crystallographic parame-
ters Mn ≡ {ωn, βn}. As D ∈ [0,∞) we make the
following transformations

m = ln(D) (4)

d0 = ln
(
Dobs

)
(5)

g(m) = m (6)

so that m,d0, g(m) ∈ (−∞,∞). We assume Gaus-
sian priors for both the data and the model, with
mean, d0 and m0, and covariance, Cd0 and Cm0 ,
respectively. Because the priors are Gaussian and

g(m) is a linear function of m, the posterior will
also be Gaussian and takes the particularly simple
form [14]

σm(m) = k exp

(
−1

2
S(m)

)
(7)

where

S(m) = (g(m)− d0)ᵀC−1
d0

(g(m)− d0)

+ (m−m0)ᵀC−1
m0

(m−m0)
(8)

is referred to as the misfit function. In general,
the vector-valued3 functional g(m) represents the
map between the model space, m, and the data
space, d. If observations correspond to the effective
properties of polycrystals as in [35, 36], then g(m)
is a homogenization equation. In the present case
where only direct observations of individual GBs
are considered we have the trivial expression given
in Eq. 6.
σm(m) is a probability density function that de-

scribes everything that is known about the model
m from both our observations and priors, and
therefore in the most general sense σm(m) itself
represents the solution to the inference problem.
If, rather than the probability density over possible
models, a particular model realization is desired, a
natural (though not the only) choice is the model
that maximizes the posterior probability density.
Due to the Gaussian form of the posterior in the
present case, the maximum a posteriori (MAP)
model estimate coincides with the mean of the pos-
terior, which occurs at [13–15]

m̃ = m0 + Cm0G
∗(Cd0 + GCm0G

∗)−1

· (d0 − g(m̃) + G (m̃−m0))
(9)

and is also the location of the minimum of S(m).
The covariance operator of the posterior is neces-
sary to quantify the posterior uncertainty and can

3To follow the conventions used in the literature and
avoid burdensome notation, g(m) implicitly represents
g(m,M)—i.e. it is a vector in which the n-th element
corresponds to the functional g(m) being evaluated for the
n-th microstructure, Mn, making the arithmetic operation
g(m)− d0 appearing in Eq. 8 sensible.
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Figure 3: Visual definition of the crystallographic variables used in this work. In (a) a schematic illustration of an arbitrary
[100] tilt GB is used to define the misorientation angle, ω, the polar angle of the boundary plane in the reference frame
of crystal A, ψ, and the lattice orientations of grains A and B in the GB reference frame, ωA and ωB , respectively. In
(b) the complete GB misorientation FZ for cubic crystal symmetry is shown with the subdomain of misorientations with
[100] rotation axes highlighted. The boundary plane FZ is also shown and the polar angle of the GB plane, β is defined.

be calculated via [13–15]

Cm̃ =
(
I−Cm0G

∗(Cd0 + GCm0G
∗)−1G

)
Cm0

(10)
where (·)∗ denotes the adjoint of (·) and G is the
Fréchet derivative operator, evaluated at m̃. In
general, the Fréchet derivative evaluated at a point
m is defined by [14]

Gδm = g(m + δm)− g(m) (11)

where δm is a small perturbation.

Equation 9 is an implicit equation (note that m̃
appears on both the right- and left-hand sides, and
that G depends on m̃), and can be solved by an
iterative fixed-point method [15]

m̃k+1 = m0 + Cm0G
∗
k(Cd0 + GkCm0G

∗
k)−1

· (d0 − g(m̃k) + Gk (m̃k −m0))

(12)

where Gk denotes the the Fréchet derivative eval-
uated at m̃k. We choose the prior model m0 as
the starting point (though the solution is indepen-
dent of this choice), and convergence typically oc-
curs within only a few iterations (for the results
presented here only 11 iterations were required).

2.5. Defining the Fundamental Zone

For both computational efficiency, and proper
design of the prior model covariance function (dis-
cussed below), it is necessary to explicitly define the
fundamental zone (FZ) over the relevant domain.

Consider the [100] tilt GB shown in Fig. 3(a),
coordinated by two crystals with their respective
coordinate systems shown. Without loss of gener-
ality, we assume that crystal A is aligned with the
laboratory reference frame so that the GB normal
expressed in the lab frame is equivalent to the GB
normal expressed in the crystal frame of grain A as
shown4. The misorientation angle is denoted by ω
and the polar angle of the GB normal in the refer-
ence frame of crystal A is denoted by ψ.

Figure 3(b) shows the complete misorientation
FZ for cubic symmetry. The sub-manifold corre-
sponding to misorientations having a [100] rotation
axis is the line OA where ω increases from 0◦ to 45◦.
The corresponding boundary plane FZ is a stereo-
graphic triangle rotated by an angle ω/2 from the
[010] axis (see [37, 38]). The subset of [100] tilts
inhabit the outer arc of this stereographic trian-
gle and may be parameterized by the polar angle

4Note that we employ the active rotation convention for
all calculations
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Figure 4: The fundamental zone (FZ) for [100] tilt GBs for
cubic crystal symmetry. The left portion with ω ∈ [0◦, 45◦]
and β ∈ [0◦, 45◦] is the FZ. Note that the FZ is not closed
as the line ω = 45◦ over the range β ∈ [22.5◦, 45◦] is not in-
cluded in the FZ. The oval at the point (ω, β) = (45◦, 22.5◦)
represents a two-fold axis of symmetry. When the domain
ω ∈ [0◦, 90◦] and β ∈ [0◦, 45◦] is considered it is referred to
as FZ2 since it contains two symmetric copies of the FZ.

β ∈ [0◦, 45◦]. As indicated in the figure, this an-
gle is related to the polar angle of the GB normal
expressed in the reference frame of crystal A via
β = ψ − ω/2. Combining the misorientation and
boundary plane FZ subspaces we arrive at the com-
plete FZ for [100] tilt GBs defined by ω ∈ [0◦, 45◦]
and β ∈ [0◦, 45◦], which is shown in Fig. 4. Mir-
ror planes exist for ω = 0◦, ω = 90◦, β = 0◦, and
β = 45◦, and there is a two-fold rotation symmetry
about the point (ω, β) = (45◦, 22.5◦). In conse-
quence of this two-fold rotation, this FZ is often
displayed together with a neighboring symmetric
copy as shown in Fig. 4 (see e.g. [8]). We will refer
to this augmented domain defined by ω ∈ [0◦, 90◦]
and β ∈ [0◦, 45◦] as FZ2. One common implicit use
of FZ2 in the literature is for the display of the sub-
set of symmetric [100] tilts, which can be compactly
represented by the line β = 0 with ω ∈ [0◦, 90◦], as
we have done in Fig. 2.

2.6. Designing the Covariance (Kernel) Function

Structure-property models for GBs must respect
certain physical invariances (e.g. crystallographic
symmetries). These constraints represent impor-
tant prior information about possible models that
must inform the design of proper priors. There
are two types of invariance that are relevant to the
present problem.

2.6.1. Crystallographic Symmetry

The first type of invariance consists of crystal-
lographic symmetry operations. With the domain
of interest restricted to FZ2, there remains a finite
group, H, of crystallographic symmetry operations
consisting of the identity and a two-fold rotation
about the point (ω, β) = (45◦, 22.5◦). Ginsbourger
et al. [39, 40] showed that a random field can be in-
variant under a group action if and only if the cor-
responding covariance function (commonly referred
to as a kernel) is argument-wise invariant under
that group action. This means that for models re-
sulting from our posterior distribution—including
the MAP estimate or any random samples from the
posterior distribution—to exhibit the proper sym-
metries, we must design a covariance function that
exhibits those symmetries.

One way to construct such a covariance function
that will be familiar to the microstructure com-
munity involves the use of a properly symmetrized
distance function. As we will show below, this ap-
proach succeeds in enforcing the desired symme-
tries, but at the cost of introducing topological ar-
tifacts. We propose an alternative approach that
circumvents this drawback by employing an unsym-
metrized distance function in conjunction with the
sum-over-group-orbits strategy [39–41].

Distance metrics for GBs have been an active
area of research for some time and there are a vari-
ety of candidates in the literature (see e.g. [42–46]
and [47] for a recent review of extant distance met-
rics). We choose to formulate our approach in the
context of the recently developed octonion distance
metric [45].

A GB can be represented by a unit octonion de-
fined by [45]

o =
1√
2

[qA, qB] (13)

where qA and qB are unit quaternions representing
the crystal orientations of grains A and B incident
to the GB, expressed in the GB plane reference
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frame5 [45], and defined by

q =
[
cos
(ω

2

)
, sin

(ω
2

)
n̂
]

(14)

where ω and n̂ are the angle and axis of rotation,
respectively. The distance between two GB octo-
nions (GBOs) is computed via [45]

Ω = 2 arccos |o1 · o2|

= 2 arccos

(
1

2
|qA · qC + qB · qD|

)
(15)

where the first GB is coordinated by grains A and
B and the second GB is coordinated by grains C
and D. Due to the existence of a free parameter,
ζ, in this representation (rigid body rotations of
the GB about its normal leave it unchanged) one
must normally minimize this distance with respect
to ζ. However, for [100] tilt GBs ζmin = 0 and no
minimization is necessary. When crystal symme-
tries exist, all symmetrically equivalent GBOs are
considered and the smallest distance is chosen.

For [100] tilt GBs Eq. 15 simplifies to

Ω = 2 arccos

∣∣∣∣cos

(
ωAB − ωCD

4

)
cos

(
βA − βC

2

)∣∣∣∣
(16)

where ωXY is the misorientation angle between
grains X and Y and βX is the GB inclination pa-
rameter for the GB normal pointing away from
grain X (outward-pointing normal convention).
We note that for symmetric [100] tilts we have
βA = βC = 0 and the GBO distance is equal to
half the difference in tilt angles.

With a distance function defined we introduce
the resulting covariance (kernel) function. There
are numerous choices available depending on the
application and one’s assumptions about the na-
ture of the function to be inferred (e.g. differen-
tiability). A common choice is the Gaussian (or
squared-exponential) covariance

C(x,x′) = σ2 exp

(
−d

2(x,x′)

2L2

)
(17)

5The GB plane reference frame is illustrated explicitly
in Fig. 3(a) as the coordinate system defined by yR and
zR. As shown there, the parameters ωA and ωB are the
angle of rotation for the quaternion orientations qA and qB
respectively.

where σ is a constant marginal uncertainty (stan-
dard deviation), L is the “smoothness length,” and
d2(x,x′) is the squared distance between points x
and x′; for the present problem x ≡ (ω, β). The
Gaussian covariance is stationary and, when the
distance function is Euclidean (in any dimension),
this covariance function is positive definite [48, 49].
However, in many cases (like the present) the
physically relevant distance between two points is
non-Euclidean, and in such cases the guarantee of
positive-definiteness is lost and C(x,x′) ceases to
be a valid covariance function.

There are two common strategies for addressing
this: (i) multidimensional scaling, and (ii) approxi-
mation. In the multidimensional scaling approach,
one uses dimensionality reduction techniques in
reverse to find a mapping to a sufficiently high-
dimensional space that the distance becomes Eu-
clidean [50]. Alternatively, one can find the clos-
est symmetric positive-definite covariance function
under some appropriate norm, e.g. Frobenius [51].
We adopt the latter approach, which can be read-
ily computed in MATLAB via the nearestSPD()

function [52].
There are actually 2 causes of the non-positive

definiteness of the covariance function when the
symmetrized GBO distance metric is used in
Eq. 17: (i) the intrinsic non-Euclidean nature of
the GBO distance; (ii) crystallographic symmetry.
If crystallographic symmetry is not considered, the
GBO distance is, in fact, very nearly Euclidean, at
least for the sub-manifold of [100] tilt GBs. For this
sub-manifold we find that the approximation

Ω ≈

√(
ωAB − ωCD

2

)2

+ (βA − βC)2 (18)

produces the same result as Eq. 16 to within 0.3◦

for Ω ∈ [0◦, 45◦]. However, even if a truly Euclidean
distance function is used, the introduction of crys-
tallographic symmetries makes the distance become
non-Euclidean. The result is that even after find-
ing the nearest symmetric positive-definite approxi-
mating covariance function, undesirable topological
artifacts are produced.

To illustrate this effect, Fig. 5 shows the result
of a validation test in which GB diffusivity was
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Figure 5: Comparison of in-
ference results using differ-
ent symmetrization strategies.
In (a) the true (test) model
is shown. This model uses
the BRK model [8] to assign
γ(ω, β) and then converts γ to
diffusivity via the Borisov re-
lation [4, 21]. Inference results
from 100 random observation
points using (b) the sym-
metrized distance approach,
and (c) the sum-over-group-
orbits approach are shown, to-
gether with their respective
posterior uncertainties in (e)
and (f). The uncertainty is
multiplicative as described in
Section 3.1. In (d) the infer-
ence result from (c) along the
line ω = 0◦ is presented.

inferred from 100 random samples taken from a
test model. Notice the spurious wrinkling artifact
present in both the MAP estimate, (b), and the cor-
responding posterior uncertainty, (e), in the vicin-
ity of the two-fold rotation axis.

We attribute this topological artifact to the fact
that when the distance function is symmetrized it
can distort the shape of the kernel in the vicinity
of the symmetry axis, creating a cusp that varies
with position, as shown in Fig. 6(a).

To circumvent such topological artifacts, and still
enforce that C(x,x′) is argument-wise invariant un-
der H, we take a different approach. Rather than
enforcing symmetry via d(x,x′), we instead use the
unsymmetrized GBO distance (i.e. we use Eq. 16
without minimizing over symmetrically equivalent
points) and impose argument-wise invariance on
C(x,x′) under H via a sum over the orbit of H
as follows:

Csymm(x,x′) =
1

|H|2
∑
h∈H

∑
h′∈H

C(h.x, h′.x′) (19)

where h, h′ ∈ H are crystallographic symmetry op-
erations, h.x indicates their application to the point
x, and |H| is the cardinality of H. As shown in
Fig. 6(b), the resulting covariance function satis-

Figure 6: Symmetrized covariance function evaluated at
x ≡ (ω, β) = (39◦, 21◦), using (a) the symmetrized distance
approach, and (b) the sum-over-group-orbits approach.
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fies the 2-fold symmetry without introducing the
artifact causing cusp.

Figure 5(c) and (f) show the result of the same
validation test as before, but using Csymm(x,x′)
with the unsymmetrized GBO distance metric. No-
tice the dramatic reduction of the spurious topolog-
ical wrinkling artifact in both the MAP estimate
(c) and the posterior uncertainty (f). For our cal-
culations we still apply nearestSPD() to the result
of Eq. 19 to make sure that neither the slight non-
Euclidean nature of the unsymmetrized GBO met-
ric, nor any numerical floating-point errors lead to
violation of the constraint of symmetric positive-
definiteness.

2.6.2. No-boundary Singularity

In addition to the crystallographic symmetry al-
ready discussed, there is a fundamentally different
type of invariance that must also be considered: the
no-boundary singularity. In the GB octonion for-
malism, points for which the misorientation angle,
ω, is equal to zero, but having different GB nor-
mals, β, are treated as distinct GB configurations.
However, all such points are physically indistin-
guishable, since when ω = 0◦ there is no GB, rather
we have a single crystal. This issue is referred
to as the “no-boundary singularity,” and different
authors have taken different approaches to handle
it in the context of distance calculations [43, 45–
47, 53, 54] and the definition of GB FZs [37].

In the present context, this issue manifests it-
self because we expect that any valid structure-
property model will return the same property
value for physically indistinguishable GBs even if
those GBs have distinct crystallographic parame-
ters. This means that we have the physical con-
straint D(0, β) = D(0, 0). Unfortunately, im-
posing such a constraint via the covariance func-
tion is more difficult than was enforcing crystallo-
graphic symmetry, and doing so appears to be in
direct competition with the constraint of positive-
definiteness. Hopefully future work will find an el-
egant solution to this issue. In the meantime we
propose, as a workaround, an approximate solu-
tion. Rather than imposing this invariance on the
covariance function, we impose it on the data by
augmenting our dataset with copies of no-boundary

points along the line ω = 0◦. The results shown
in Fig. 5(b) and (c) both implement this approach
with the single-crystal data point, D(0, 0), repli-
cated along the line ω = 0◦ at a resolution of 1◦

in β. As is apparent, the resulting inferred func-
tion along the line ω = 0◦ is almost constant. Fig-
ure 5(d) shows a close up view of the trace of the
inferred model from Fig. 5(c) along the line ω = 0◦

(which corresponds to the no-boundary condition),
demonstrating that while this invariance is not ex-
actly satisfied, it is reproduced to a very good ap-
proximation.

3. Results & Discussion

3.1. Structure-Property Model Inference
We have applied the inference methods just pre-

sented in Section 2 to the data summarized in Ta-
ble 1 to obtain a structure-property model for H
diffusivity in Ni [100] tilt GBs at 700 K.

For the prior model, we chose a constant value
of m0 = 1

2
(ln(Dmax) + ln(Dmin)) = −19.8471,

where Dmin = 1.3653 × 10−9 m2/s and Dmax =
4.2249 × 10−9 m2/s are the minimum and maxi-
mum diffusivities that were observed in the data.
For the prior model covariance matrix, Cm0 , we
used Eq. 17 with a uniform marginal uncertainty of
σ = 1

2
(ln(Dmax)− ln(Dmin)) = 0.5648, and we used

Eq. 19 to perform symmetrization via the sum-over-
group-orbits approach.

For the priors on the data, we chose d0 =
{d0,1, d0,2, . . . , d0,N}, where d0,n = ln

(
Dobs

n

)
repre-

sents the logarithm of the diffusivity observations.
The no-boundary singularity invariance was en-
forced by the procedure described in Section 2.6.2.
For the prior data covariance matrix, we chose

Cd0 = diag
(
σ2
d0,1
, σ2

d0,2
, . . . , σ2

d0,N

)
, where σd0,n rep-

resents the uncertainty of the n-th diffusivity ob-
servation.

For the MD diffusivity data, DS01, from Table 1,
Dobs

n is defined as

Dobs
n = exp

(
1

K

K∑
k=1

ln(Dn,k)

)
(20)

where Dn,k is the estimate of the diffusivity of the
n-th GB from the k-th sub-interval in the boot-
strapping procedure (see Fig. 1 and Section 2.2.1).
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Figure 7: Colored surface in (a) and (b) shows the inferred function, D̃(ω, β), for H diffusivity in [100] tilt GBs in Ni
at 700 K using datasets DS01, DS02, DS03. In (a) data points are included with black lines indicating the observation
uncertainty for each point. In (b) a top-down view of (a) is provided showing the 2-fold symmetry of the inferred function.

The definition of Dobs
n provided in Eq. 20 simply

makes d0,n equal to the mean of the logarithmic
bootstrap estimates for a given GB; however, we
note that this definition of Dobs

n also coincides with
the median of the diffusivities themselves to the
degree that the distribution is lognormal. The un-
certainty corresponding to Dobs

n , is also calculated
from the bootstrap estimates according to

σ2
d0,n

=
1

K − 1

K∑
k=1

[
ln(Dn,k)− ln

(
Dobs

n

)]2
(21)

i.e. σd0,n is defined as the standard deviation of
the logarithm of the diffusivities obtained by the
bootstrapping procedure.

For the MD energy data, DS02 and DS03, from
Table 1, Dobs

n was obtained by converting the en-
ergy data to diffusivity via the procedure described
in Section 2.1 and Appendix A. The corresponding
uncertainty values σd0,n were obtained via the same
procedure (see Appendix A) based on the estimated
uncertainty in the energy data (i.e. the uncertainty
in the energy observations is propagated to the cor-
responding estimates of diffusivity).

Figure 7 presents our results: an inferred

structure-property model, D(ω, β), for H diffusiv-
ity in Ni [100] tilt GBs at 700 K. The numerical
values of this structure-property model evaluated
over a grid of 1◦ × 1◦ resolution are provided as a
.mat file in the supplementary material.

As is apparent from Fig. 7(b), the inferred
structure-property model exhibits the two-fold
symmetry that is required by crystallographic con-
straints, is approximately constant along the line
ω = 0◦ (i.e. it respects the no-boundary singu-
larity invariance, at least approximately), and is
consistent with the data (see Fig. 7(a)).

The marginal posterior uncertainty is calculated
from the posterior covariance function (see Eq. 10)
according to

σm̃(x) =
√
Cm̃(x,x). (22)

One may then write, as a shorthand nota-
tion, the posterior model with its uncertainty
as m̃(x)± σm̃(x). To write this in the de-
sired units of diffusivity, we must invert the log-
transformation to obtain D̃(x) = exp(m̃(x)) and
σD̃(x) = exp(σm̃(x)). In these original units,

the shorthand expression becomes D̃(x) > σD̃(x),

11



Figure 8: The multiplicative uncertainty (σD̃) of the infer-
ence is shown together with the locations of the data.

where > indicates “multiply-or-divide” instead of
“plus-or-minus”. This means that when the uncer-
tainty in the inferred model is expressed in terms
of σD̃(x) one should remember that it is multiplica-
tive, not additive. The uncertainty σD̃(x) is shown
in Fig. 8.

To give an intuitive understanding of the magni-
tude of the multiplicative uncertainty and its mean-
ing, we note that D > (1 + f) is in the interval[

D
1+f

, D(1+f)

]
≈ [D(1−f), D(1+f)], which holds to a

good approximation up to about f = 0.3. As an
example, if σD̃(x) = 1.1 then the uncertainty is
approximately ±10%.

As expected, Fig. 8 shows that the uncertainty
is lowest in regions where data is abundant (re-
call that the observation located at (0◦, 0◦) was
replicated along the line ω = 0◦), and highest in
regions where data is absent. The median un-
certainty is 1.0767 or approximately ±8%. We
also note that the uncertainty also correctly re-
flects the expected two-fold crystallographic sym-
metry and the no-boundary singularity invariance.
The reduction in the uncertainty from the prior
(exp(σ) = exp(0.5648) ≈ 1.76) to the posterior
(σD̃ ∈ [1.01, 1.28]) is also notable.

As m̃(ω, β) is the mean of the poste-
rior σm(m), the corresponding structure-property
model D̃(ω, β) is analogous to a type of median of
the posterior distribution σD(D), which provides
the probability density of an arbitrary model D
in light of our observations and priors. D̃(ω, β) is
therefore useful because it is a representative model

with high probability density. However, the true
solution to the inference problem is embodied in
σD(D) itself, rather than any particular model re-
alization sampled from it. Because the inference
method provides σD(D), it facilitates not only un-
certainty quantification, but also uncertainty prop-
agation. In particular, it enables us to propagate
the uncertainty in the inferred structure-property
model through mesoscale simulations to study the
interaction between GB structure-property model
uncertainty and the effective properties of GB net-
works in polycrystals.

3.2. Uncertainty Propagation in Mesoscale Simu-
lations

Traditionally, mesoscale simulations rely on con-
stitutive structure-property models that are as-
sumed to be exactly known. In reality, no
structure-property model is exact and the uncer-
tainty in the structure-property model will produce
uncertainty in the results of the mesoscale simu-
lations. The current inference framework enables
this to be considered in a rigorous way. In this sec-
tion, we describe our approach and results for un-
certainty propagation in mesoscale GB network dif-
fusion simulations to study the interaction between
GB structure-property model uncertainty and GB
network structure.

Figure 9 provides a schematic illustration of the
process. The fundamental idea is that rather than
considering the structure-property model to be de-
terministic and exact, we consider it to be a random
variable characterized by the distribution σD(D).
We then generate samples from this distribution
and perform repeated mesoscale simulations using
each model realization. The result will be a dis-
tribution of simulation results (rather than a sin-
gle deterministic result), whose uncertainty may be
quantified.

For our implementation of this approach,
we sampled S = 100 different models6,
{Ds (ω, β) | s ∈ [1, S]}, from the posterior distribu-
tion, σD(D) using the procedure described in Ap-

6To be precise, we sample models, ms (ω, β), from
the posterior, σm(m), and then convert each ms (ω, β) to
Ds (ω, β).
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Figure 9: Schematic illustration of the uncertainty propagation process employed. For a single microstructure, 100
different simulations of the effective GB network diffusivity, Deff, are performed. In each simulation the GB properties are
assigned using a different model Ds(ω, β). The uncertainty in the simulation results, σDeff

is calculated from the resulting
distribution of Deff. The process shown in this figure is repeated for each of the 1771 microstructures considered.

pendix B. For each microstructure we assign GB
properties using each of the 100 models, and calcu-
late the effective diffusivity of the GB network, Deff.
The resulting distribution of Deff quantifies the un-
certainty in Deff resulting from the uncertainty in
the structure-property model D̃ (ω, β).

To investigate the effect of the interaction be-
tween structure-property model uncertainty and
GB network structure on the uncertainty of effec-
tive properties, we employed a database of 1771
two-dimensional microstructures from [35, 36], each
having 100 grains, and whose triple-junction (TJ)
fractions span the J-space (the space of all possible
TJ fractions). TJ fractions [55–60], {Ji | i ∈ [0, 3]},
denote the fraction of TJs coordinated by i low-
angle GBs (LAGBs). Consequently, they quantify
local spatial correlations in the GB network. We
calculated the effective diffusivity of the GB net-
work using the finite volume approach of [35, 36].

Figure 10 shows the multiplicative uncertainty of
the effective diffusivity,

σDeff
= exp

(
1

S

S∑
s=1

[ln(Deff,s)− 〈ln(Deff,s)〉]2
)

(23)

for each of the 1771 microstructures, where 〈·〉 im-
plies the mean. The range of observed values of
σDeff

corresponds to approximately between ±2%
and ±5%, which indicates that the microstructures
with the largest effective property uncertainty ex-
hibit more than twice the uncertainty of those with
the least uncertainty. There is a notable trend of
increasing uncertainty from the J1 corner towards
the J2 corner. This is visible in Fig. 10(a) as the
color transitions from dark blue at the J1 corner to
orange/red near the the J2 corner.

To view the trends more clearly we plot σDeff
vs.

each of the Ji coordinates in Fig. 10(b). We also
quantify the correlation between σDeff

and each of
the Ji using Spearman’s correlation coefficient, ρS.
Like the more familiar Pearson correlation coeffi-
cient, ρP , Spearman’s correlation coefficient ranges
between ρS ∈ [−1, 1] and is invariant to monotone
transformations of either of the variables [61]. How-
ever, whereas ρP measures only linear correlations,
ρS measures any monotonic correlation—whether
linear or non-linear—and is therefore more general.
Because we have no a priori reason to assume lin-
ear correlations, we employ the more general ρS.
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Figure 10: (a) Multiplicative uncertainty, σDeff
, of the effective GB network diffusivity, Deff, for each of the 1771 mi-

crostructures. The range of observed uncertainty is equivalent to between roughly ±2% and ±5%, indicating that the
microstructures with the largest effective property uncertainty have more than twice the uncertainty of those with the least
uncertainty. Each data point corresponds to a single microstructure, and its coordinates indicate that microstructure’s
TJ fractions. For example, the microstructure with coordinates [J0, J1, J2, J3] = [0.5, 0, 0.25, 0.25] (for which 50 % of its
TJs are coordinated by 0 LAGBs, 25 % by 2 LAGBs, and 25 % by 3 LAGBs) was observed to exhibit an uncertainty of
σDeff

= 1.0364 (i.e. approximately ±4%). In (b) we plot σDeff
vs. each of the respective Ji coordinates so that the trends

are easier to see. We also provide the Spearman correlation coefficient, ρS , and the corresponding p-value to quantify the
correlation between σDeff

and each of the respective Ji.

The value of ρS is provided together with the cor-
responding p-value for each plot in Fig. 10(b). We
note that the p-value indicates that a statistically
significant correlation between σDeff

and each of the
respective Ji exists at the α = 0.05 level; however,
the magnitude of that correlation (the value of ρS)
varies widely, with σDeff

having a strong positive
correlation with J2, a strong negative correlation
with J1, and very small negative correlations with
J0 and J3.

3.3. Origin of Correlations Between σDeff
and Ji

The fact that such correlations exist is signifi-
cant. The TJ fractions of a microstructure directly
quantify the type and magnitude of local spatial
correlations in the GB network. They can be used
to define a set of order parameters that character-
ize (i) the degree of mixing vs. segregation be-

tween LAGBs and high-angle GBs (HAGBs) and
(ii) whether clusters of LAGBs (or HAGBs) form
compact or extended topologies [62]. Because σDeff

is a direct result of the posterior distribution of
structure-property models, σD(D), the existence of
a trend in σDeff

across the J-space implies a re-
lationship or interaction between σD(D) and the
spatial correlations embodied in the TJ fractions.

To analyze this effect we first recall the fact,
noted earlier, that because it is Gaussian, the pos-
terior distribution over the model space, σm(m),
can be compactly described in terms of its mean
m̃(x) and covariance operator Cm̃(x,x′). Moreover,
Cm̃(x,x′) can be decomposed according to

Cm̃(x,x′) = σm̃(x)σm̃(x′) ρm̃(x,x′) (24)

where σm̃(x) is the posterior marginal uncertainty
defined in Eq. 22, and ρm̃(x,x′) ∈ [−1, 1] is a corre-
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Table 2: Definitions and levels of the factors (independent variables) used in the full factorial experimental design and
analysis of variance (ANOVA). The values for the constants defining the “off” states of m̃(x) and σm̃(x) were chosen to
be near the mean of the actual values of the respective functions.

Factor
Levels

“on” “off”

m̃(x) actual ln (2.5× 10−9 m2/s)
σm̃(x) actual 0.0876
ρm̃(x,x′) actual δ(x,x′)

lation function that defines how well-correlated the
values of structure-property models generated by
the posterior distribution, σm(m), and evaluated at
points x and x′ will be. In other words, if we were to
generate many samples, {ms(x) | s ∈ [1, S]}, from
the posterior, σm(m), and then plot ms(x) vs.
ms(x

′) for each sampled model, ρm̃(x,x′) would de-
scribe the observed correlation between ms(x) and
ms(x

′) across all s.

This decomposition of the posterior allows us to
investigate the origin of the correlation between
σDeff

and the Ji. The Ji quantify the short-range
spatial correlations between LAGBs and HAGBs
in the microstructure, and are therefore indepen-
dent of any structure-property model applied to the
microstructure. Consequently, any trend in σDeff

over the J-space must be a result of the poste-
rior, σm(m), and therefore must originate with the
3 independent functions, m̃(x), σm̃(x), or ρm̃(x,x′),
that uniquely define the posterior.

It may be that the observed trend over the J-
space is an artifact of the form of the structure-
property models Ds (ω, β) sampled from the pos-
terior during the uncertainty propagation process
(i.e. how the diffusivity varies over (ω, β), which,
though stochastic, shares characteristic features
with the model D̃ (ω, β) shown in Fig. 7). Alterna-
tively, the trend could be the result of the marginal
uncertainty σD̃(x) (shown in Fig. 8), which merely
indicates the sparsity of data over (ω, β) for the
particular dataset employed. Or, it is possible that
the similarity of properties between different GBs
over (ω, β), as quantified in ρm̃(x,x′), may be re-
sponsible for the trend.

To test these hypotheses and determine which
of these 3 factors (or any interactions between

them) are primarily responsible for the observed
trend in effective property uncertainty over the J-
space, we performed a 3-way analysis of variance
(ANOVA) using a full factorial experimental de-
sign (see Fig. 11). We considered 2 levels for each
of the 3 factors m̃(x), σm̃(x), and ρm̃(x,x′). For
each factor, the levels were essentially “on” and
“off”, where the respective component functions
resulting from the actual posterior constituted the
“on” state, and the “off” state was defined by con-
stant functions for m̃(x), and σm̃(x), or an uncorre-
lated state for ρm̃(x,x′)—i.e. ρm̃(x,x′) = δ(x,x′).
Table 2 summarizes the factors (independent vari-
ables) and their levels. We considered 4 dependent
(response) variables: the Spearman correlation co-
efficient between σDeff

and each of the respective Ji,
denoted by ρS(Ji, σDeff

). The 3-way ANOVA was
performed for each of these 4 response variables.

For each of the 8 experimental conditions, we fol-
lowed the uncertainty propagation procedure de-
scribed in Section 3.2 using a modified posterior,
σ̂m(m), for which the respective levels of the 3
factors m̃(x), σm̃(x), and ρm̃(x,x′) were assigned
based on the experimental condition. For each ex-
perimental condition we sampled S = 100 models
from the modified posterior, and we repeated this
process 100 times (i.e. there were 100 independent
replicates of every experiment).

Figure 11 shows the distribution of ρS(Ji, σDeff
)

for each of the 8 experimental conditions (over all
100 replicates). Several observations are of note.

First, when all 3 factors are in the “off” state,
ρS(Ji, σDeff

) ≈ 0 ∀ i, indicating that under these
conditions the trend of σDeff

over the J-space is
eliminated. This confirms the hypothesis that the
observed trend must be in some way a result of the
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Figure 11: (left) Factor levels for each of the 8 experimental conditions. (right) Distributions of each of the respective
response variables, ρS(Ji, σDeff

), over all 100 replicates for every experiment. The bottom row shows the distributions of
the respective response variables when all 8 experiments are combined together. The vertical axes for all distributions
correspond to probabilities and the plots without explicit vertical axes are all scaled to [0, 0.75].

posterior, σm(m).

Second, the distributions of the response vari-
ables fall nominally into a small number of groups
that are well separated, e.g. the distributions of
ρS(J1, σDeff

) fall into 3 groups respectively centered
near -0.4, -0.2, and 0. The clear separation between
groups suggests that the factors that were tested
explain the variation in the combined distribution
(the bottom row of Fig. 11) very well.

Third, the correlations can vary widely; e.g.
ρS(J2, σDeff

) ranges from -0.14 to +0.68. This im-
plies that changes to these factors affect not only
the quantitative magnitude of the observed trend,
but even its qualitative form (i.e. changes from
negative correlations to positive correlations).

The ANOVA results in Table 3 provide addi-

tional insight and allow us to quantify the effect
of each of the 3 factors considered, as well as other
sources, such as interactions among them. The p-
values indicate that all 3 factors (as well as all of
their interactions) are statistically significant at the
α = 0.05 level. However, statistical significance
does not tell us anything about the magnitude of
the effect each factor may have—it is possible to
have a very small effect that is still statistically
significant.

The sum-of-squares (SS) allows us to evaluate
the magnitude of the effect of each factor. The total
sum-of-squares (SST) measures the total variation
in each of the respective response variables, and it is
simply the sum of the SS of each of the sources. The
residual SS (SSR) is the amount of the SST that is
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Table 3: Reduced ANOVA tables for the full factorial experimental design. The sources of variation considered, including
the 3 factors m̃(x), σm̃(x), and ρm̃(x,x′) and their interactions, are shown in the column labeled “Source”. The 4
response (dependent) variables, ρS(Ji, σDeff

) are indicated, together with the sum-of-squares (SS) and p-values for each
of the sources. The total sum-of-squares (SST) is the sum of all of the SS from all sources, including the residual
sum-of-squares (SSR), which is itself the amount of the SST not explained by the other sources.

ρS(J0, σDeff
) ρS(J1, σDeff

) ρS(J2, σDeff
) ρS(J3, σDeff

)

Source SS p-Value SS p-Value SS p-Value SS p-Value

m̃(x) 0.3754 0.0000 0.0235 0.0000 0.3272 0.0000 0.0496 0.0000
σm̃(x) 9.1941 0.0000 2.0797 0.0000 17.8681 0.0000 25.1617 0.0000
ρm̃(x,x′) 34.7030 0.0000 23.5479 0.0000 34.9643 0.0000 13.4270 0.0000
m̃(x) · σm̃(x) 0.1763 0.0000 0.0035 0.0000 0.0553 0.0000 0.0124 0.0000
m̃(x) · ρm̃(x,x′) 0.0203 0.0000 0.0085 0.0000 0.2377 0.0000 0.1471 0.0000
σm̃(x) · ρm̃(x,x′) 2.2796 0.0000 1.1852 0.0000 1.3356 0.0000 1.4112 0.0000
m̃(x) · σm̃(x) · ρm̃(x,x′) 0.0008 0.0505 0.0001 0.4241 0.0007 0.0490 0.0016 0.0054

Residual (SSR) 0.1749 0.1593 0.1463 0.1624
Total (SST) 46.9243 27.0079 54.9353 40.3729

not explained by the other sources. The fact that
the SSR is, in all cases, very small compared to the
SST corroborates the earlier observation that the
chosen factors explain the data well, and, impor-
tantly, that any variation from other sources (e.g.
stochasticity or other factors that were not consid-
ered) is negligible.

The factors that have the largest effect are
σm̃(x) and ρm̃(x,x′), which together account for
94 % – 96 % of the SST. Apparently, the form of the
structure-property model, m̃(x), has a negligible ef-
fect7, as do all of the interaction terms. Moreover,
the effect of ρm̃(x,x′) was observed to be about
2 – 11 times larger than that of σm̃(x) for all of the
response variables except for ρS(J3, σDeff

), for which
σm̃(x) was observed to be about 2 times larger than
that of ρm̃(x,x′).

This suggests that the dominant factor that is
responsible for a trend in the effective property un-
certainty, σDeff

, over the J-space is the correlation
function, ρm̃(x,x′). In other words, there is a fun-
damental interaction between the crystallographic
correlations embodied in ρm̃(x,x′) and the spatial
correlations embodied in the Ji that leads to certain

7We repeated the test using a constant for the “off” state
of m̃(x) that was many orders of magnitude different from
the value given in Table 2 and the results were nearly iden-
tical.

types of microstructures having intrinsically larger
effective property uncertainty, σDeff

.
It is important to note that the trend shown

in Fig. 10 includes the non-negligible influence of
σm̃(x). However, σm̃(x) simply measures the spar-
sity in our dataset, so its effect is idiosyncratic to
the particular dataset. In contrast, ρm̃(x,x′) quan-
tifies something physical about how properties of
different GBs are correlated with one another and
this effect is expected to be generalizable. Thus,
to observe the the true underlying physical trend
in σDeff

over the J-space, we should consider the
experimental condition when the factors m̃(x) and
σm̃(x) are in the “off” state, and ρm̃(x,x′) is in the
“on” state. This is shown in Fig. 12.

The observed trend resulting from only the im-
pact of the natural posterior crystallographic cor-
relations encoded in ρm̃(x,x′) has similarities with
the trend previously observed in Fig. 10, which in-
cluded the effects of all factors. This is to be ex-
pected since ρm̃(x,x′) was found to be the dom-
inant factor (i.e. whether or not you include the
other factors, the effect of ρm̃(x,x′) will be appar-
ent). However, when the effect of ρm̃(x,x′) is iso-
lated, there are also some notable differences. In
particular, we find that (see, esp., Fig. 12(b))

(i) σDeff
is strongly correlated with each of the Ji

(ii) σDeff
increases with increasing J2 and J3

(iii) σDeff
decreases with increasing J0 and J1.

17



Figure 12: (a) Average multiplicative uncertainty, σDeff
, of the effective GB network diffusivity, Deff, for each of the 1771

microstructures over all 100 replicates of the experimental condition having the factors m̃(x) and σm̃(x) in the “off” state,
and ρm̃(x,x′) in the “on” state. The range of observed uncertainty is equivalent to between roughly ±1.6% and ±3%,
indicating that the microstructures with the largest effective property uncertainty have nearly twice the uncertainty of
those with the least uncertainty. In (b) we plot σDeff

vs. each of the respective Ji coordinates so that the trends are easier
to see. We also provide the Spearman correlation coefficient, ρS , and the corresponding p-value to quantify the correlation
between σDeff

and each of the respective Ji.

As noted earlier, one of our initial hypotheses was
that the trend in σDeff

might be due simply to varia-
tions in the marginal uncertainty, σm̃(x)—i.e. that
microstructures containing more GBs whose prop-
erties are themselves uncertain will have greater ef-
fective property uncertainty. Contrary to this ex-
pectation, these results show that the increase in ef-
fective property uncertainty with increasing J2 and
J3 is not due to any particular type of GB having
more intrinsic property uncertainty—since in this
case all GBs have the same uncertainty because
σm̃(x) was turned “off” (set to a constant)—rather
it is a result of the interaction between crystallo-
graphic correlations (ρm̃(x,x′)) and spatial corre-
lations (the Ji).

In summary, when we isolate the dominant and
most physically relevant factor, ρm̃(x,x′), we find
that independent of the particular microstructures
and structure-property model employed, there is a

fundamental interaction between two distinct types
of correlations: (i) crystallographic correlations and
(ii) spatial correlations in GB networks. The re-
sult of this interaction is that certain types of mi-
crostructures (those characterized by large frac-
tions of J2- and/or J3-type TJs) naturally exhibit
greater uncertainty in Deff.

Because the natural posterior correlations that
we observe in ρm̃(x,x′) are essentially caused by
crystallographic symmetry and the assumption
that GBs that are similar (with respect to the oc-
tonion distance metric) have similar properties, we
anticipate that the observed trends should also be
general, at least for the subset of [100] tilt GBs.

4. Conclusions and Future Outlook

In this work we presented an approach for infer-
ring a GB structure-property model from observa-
tions of the properties and crystallography of a set
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of GBs. We used this method to infer a structure-
property model for H diffusivity in [100] tilt GBs
in Ni at 700 K based on MD data.

We also used the inferred structure-property
model to perform uncertainty propagation for
mesoscale simulations of the effective diffusivity of
GB networks in polycrystals. By considering a
large number of diverse microstructures, we ob-
served a fundamental interaction between crystallo-
graphic correlations and spatial correlations in GB
networks that causes certain types of microstruc-
tures (those with large populations of J2- and/or
J3-type TJs) to exhibit intrinsically larger uncer-
tainty in their effective properties.

In addition to the major results and observations
just listed, the present work contributes several im-
portant methodological developments for inference
and uncertainty quantification of GB structure-
property models including

• identification of topological artifacts in infer-
ence results if a covariance (kernel) function
based on a symmetrized crystallographic dis-
tance is employed (Section 2.6.1)

• a method to construct a positive-definite co-
variance (kernel) function based on the octo-
nion GB distance metric that avoids such topo-
logical artifacts, and which respects both crys-
tallographic symmetries and (approximately)
the no-boundary singularity (Section 2.6.1)

• a method to simultaneously perform model
calibration and uncertainty propagation in
predictions of GB diffusivity from observations
of GB energy (Appendix A)

We also offer here some recommendations for fu-
ture work, including best practices for reporting
GB property data to facilitate uncertainty quantifi-
cation, and suggestions for validation of the model
predictions presented here.

As outlined in Section 2.2 uncertainty in GB
property measurements and calculations is not uni-
versally characterized or reported; this is particu-
larly true of epistemic uncertainties. To facilitate
the development of reliable GB structure-property
models, we recommend the following:

• Aleatoric uncertainties should be explicitly
characterized and universally reported via a
minimum of 3 – 10 replicates of every exper-
imental measurement/computational calcula-
tion of a GB property. For computational cal-
culations, this can often be accomplished using
existing datasets with durations on the order
of normal MD timescales without performing
any additional simulations, using techniques
like the one we demonstrate in Section 2.2.

Admittedly, experimental replicates can be ex-
pensive and time consuming to produce. So,
if replicates are not feasible, other attempts to
quantify uncertainty (e.g. based on estimates
of instrument resolution) may be necessary.

• There is a significant need for characterization
of epistemic uncertainty in both MD simula-
tions and experimental measurements of GB
diffusivity (and other properties). For atom-
istic calculations, this might take several forms
including (i) quantifying the distribution of
errors between calculated GB properties and
experimentally measured properties (and/or
first-principles calculations) for a given inter-
atomic potential; or (ii) uncertainty propaga-
tion from calibration of interatomic potential
parameters to GB property predictions. See
[25] for additional possible routes.

In the case of experimental measurements,
some GB properties (like GB diffusivity and
GB energy) are generally obtained indirectly
through fitting of an analytical theory (e.g.
the Fisher model for GB diffusion profiles [63],
or the Herring condition for GB energy [64])
to observed data, and therefore the theoretical
(epistemic) uncertainties should be propagated
to the reported measurements.

• When reporting uncertainties, it is preferable
that the entire distribution of repeated mea-
surements be published. If the distribution is
instead summarized it should be done in a way
that is consistent with the nature of the prop-
erties being measured. At a minimum, uncer-
tainties in GB properties that are strictly non-
negative should be reported using asymmetric
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parameters such as quartiles, instead of assum-
ing symmetric parameters like standard devi-
ations. Moreover, when reporting summarized
uncertainties in the form of such parameters,
any assumptions about the form of the distri-
bution should be validated through, e.g., tests
of normality or log-normality. A convenient
qualitative assessment can be easily performed
using probability plots, though it is preferable
to supplement these with statistical tests.

For validation and improvement of the structure-
property model presented here, or other structure-
property models developed in the future, we rec-
ommend the following:

• While the prediction of GB diffusivity from GB
energy via the process presented here is conve-
nient and explicitly includes the propagation of
uncertainties (see Appendix A), the resulting
uncertainties are much larger than for direct
calculations/measurements of GB diffusivity
(see Fig. 14) as they incorporate uncertainty
from both the calculated GB energies and the
conversion process itself (i.e. the theoretical
uncertainty). It would therefore be beneficial
to expand the existing dataset and reduce its
uncertainty by directly calculating GB diffu-
sivities for a much broader survey of GB types
spanning the full 5D space of GB characters.
This will be true for other GB properties as
well.

• Characterization of the distribution of prop-
erty values across the metastable states of GBs
will enable more rigorous uncertainty quantifi-
cation and more accurate mesoscale modeling.
In the most general sense, a GB structure-
property model should be a distribution of
property values for every GB—i.e. a model
of the form f(P, ω, θ, φ, α, β) where f(·) is a
distribution, P is the property of interest, and
{ω, θ, φ, α, β} are the crystallographic parame-
ters of a GB. However, given the current state
of the art, this is admittedly quite challenging,
so in the short term, it would be helpful to
at least estimate, for a small number of GBs
in the system of interest, to what degree the

properties of a single GB state (e.g. the 0 K or
finite temperature minimum energy state) are
representative (i.e. how tight the distribution
of properties is across metastable states).

Acknowledgement

The material presented here is based upon work
supported by the National Science Foundation un-
der Grant No. 1610077. We gratefully acknowl-
edge the use of high-performance (supercomput-
ing) computational resources provided by Brigham
Young University’s Office of Research Computing.

A. Converting GB Energy to Diffusivity

To convert GB energy to diffusivity, we couple
the Borisov relation [4, 21] with a Bayesian ap-
proach to simultaneous model calibration and pre-
diction. The Borisov relation can be expressed as

ln DGB = α
( γ

kT

)
+ lnDB + lnλ (25)

where DGB = [DGB,1, DGB,2, . . . , DGB,N ]ᵀ, and γ =
[γ1, γ2, . . . , γN ]ᵀ are vectors of observations of GB
diffusivity and energy, respectively, and all other
parameters—DB (bulk diffusivity), α, and λ—are
scalars.

As discussed in Section 2.2, the fact that both
diffusivity and energy are in R ≥ 0 implies that
prior models for their uncertainties cannot be nor-
mally distributed; however, Gaussian priors can be
used if a logarithmic change of variables is em-
ployed. The physical interpretation of α and λ sug-
gests that these parameters are also non-negative
(see [4] for an explanation of these parameters).
Consequently, we recast Eq. 25 as

y − 1

kT
ex+u − z − v = 0 (26)

where

x = lnγ (27)

y = ln DGB (28)

z = lnDB (29)

u = lnα (30)

v = lnλ (31)
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Our a priori assumptions on the parameters are
that they are uncorrelated and Gaussian. The joint
prior distribution is then a Gaussian with mean

m0 = [x0,y0, z0, u0, v0]ᵀ (32)

and covariance matrix

Cm0 = diag
(
σ2
x1
, . . . , σ2

xN
, σ2

y1
, . . . , σ2

yN
, σ2

z , σ
2
u, σ

2
v

)
(33)

Similar to the approach of [14] (see pg. 273), let
us define a vector d such that

d = g (m) = y − 1

kT
ex+u − z − v (34)

Our a priori assumptions on the Borisov relation
itself are that it holds only approximately, and that
uncertainties are again Gaussian. Consequently,
the prior distribution on d will be a Gaussian with
mean d0 = 0 and diagonal covariance matrix Cd0 .

With these priors, the posterior distribution will
be of the form

σm(m) ∝ exp

(
−1

2
S(m)

)
(35)

where

S(m) = (g(m)− d0)ᵀC−1
d0

(g(m)− d0)

+ (m−m0)ᵀC−1
m0

(m−m0)
(36)

The non-linearity of Eq. 26 implies that the poste-
rior is not strictly Gaussian, but we may expect it
to be approximately Gaussian near the MAP point,
m̃.

We wish to predict GB diffusivity from GB en-
ergy via the Borisov relation, while explicitly incor-
porating uncertainties in our observations of both
GB diffusivity and GB energy as well as uncertainty
in the Borisov relation itself. We do this by per-
forming the inference in 2 passes.

In the first pass, we let

x0 = xobs (37)

y0 = yobs (38)

where xobs and yobs are vectors that correspond to
pairs of observations of GB energy and diffusivity

respectively (we use dataset DS01 from Table 1 to-
gether with the corresponding 0 K GB energies re-
ported in our prior work [4]). We also set Cd0 = 0,
which forces the posterior estimates x̃ and ỹ to fall
on the line g(m̃) = d0. We then obtain the MAP
point, m̃ via the following iterative steepest-descent
algorithm (see Eq. 6.308 of [14])

m̃k+1 = m̃k − νk
(
Cm0G

ᵀ
k(Cd0 + GkCm0G

ᵀ
k)−1

· (d0 − g(m̃k) + Gk (m̃k −m0))
)

(39)

with the variable step-size, νk, given by

νk =
aᵀ
kC
−1
m0

ak

aᵀ
kC
−1
m0

ak + bᵀ
kC
−1
d0

bk

(40)

and where

ak = Cm0G
ᵀ
kC
−1
d0

(g(m̃k)− d0) + (m̃k −m0) (41)

bk = Gkak (42)

Using the posterior estimates of ũ and ṽ from
this first pass, together with the prior data, x0, y0,
and z0, we obtain an estimate of the modelization
uncertainty from the distribution of the residuals,
which can be expressed as

δ0 = y0 −
1

kT
ex0+ũ − z0 − ṽ (43)

as shown in Fig. 13.
Using the dispersion of the residuals, we perform

the second pass with Cd0 = σ2
δ0

and let

x0 = [xobs,xquery]ᵀ (44)

y0 = [yobs,ypred]ᵀ (45)

where xquery represents the set of GB energy obser-
vations (DS02 and DS03) for which we wish to pre-
dict the corresponding GB diffusivity, as embodied
in ypred.

We choose our prior estimates of ypred, u0, and v0

arbitrarily to be equal to zero, and we set the corre-
sponding uncertainties to an arbitrarily large value
(we use 106) representing our complete ignorance
about the true value of these parameters. We then
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Figure 13: Distribution of the residuals (Eq. 43) of the first-
pass of the model calibration procedure.

perform simultaneous model calibration and pre-
diction by again obtaining the MAP point, which
we will denote m̃̃, to distinguish it from the result
of the first pass. We find it convenient this time to
use a Newton algorithm (see Eq. 6.319 of [14]):

m̃̃k+1 = m̃̃k −
(
C−1

m0
+ Gᵀ

kC
−1
d0

Gk

)−1

·
(
Gᵀ

kC
−1
d0

(
g
(
m̃̃k

)
− d0

)
+ C−1

m0

(
m̃̃k −m0

))
(46)

The result of this two step procedure is shown
in Fig. 14 where the red ellipses provide the de-
sired predictions of GB diffusivity with quantified
uncertainty, for specific observations of GB energy
(which themselves have uncertainty). These predic-
tions incorporate both the uncertainty of the obser-
vations, calibration data, and the Borisov relation
itself.

B. Sampling the Posterior

As we demonstrate in Section 3.2, one major ad-
vantage of the Bayesian approach is that it facili-
tates uncertainty propagation for mesoscale simu-
lations. To realize this potential it is necessary to
generate samples from the posterior. In general,
this is done using Monte Carlo methods [14, 34].

Figure 14: Bayesian predictions of GB diffusivity (y =
lnDGB) with quantified uncertainty, for specific observa-
tions of GB energy (x = ln γ) based on calibration of the
Borisov relation (Eq. 25). The one standard deviation el-
lipses represent the posterior uncertainty of the predictions
(red ellipses) and the prior uncertainty of the calibration
data (blue ellipses), respectively. The calibrated fit of the
Borisov relation is also shown (red line).

However, when the posterior is Gaussian, this can
be accomplished in a more efficient way [65] as fol-
lows.

Consider a discretization of the model domain
into N points. Generate N independent samples,
zn, from a standard normal distribution (i.e. zi ∼
N (0, 1). Then z = [z1, z2, . . . , zN ] ∼ N (0, I) is
a sample from the standard multivariate normal
distribution. Finally, form m = m̃ + zᵀU, where
U is the upper-triangular Cholesky factor of the
target covariance matrix Cm̃. The result is that
m ∼ N (m̃,Cm̃) is a sample from the multivariate
normal distribution with mean m̃ and covariance
Cm̃.

This can be accomplished readily in MATLAB
via the built-in mvnrnd() function.
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Mathématiques 21 (3) (2012) 501–527. doi:

10.5802/afst.1343.

[40] D. Ginsbourger, O. Roustant, N. Durrande,
On degeneracy and invariances of random
fields paths with applications in Gaussian pro-
cess modelling, Journal of Statistical Plan-
ning and Inference 170 (2016) 117–128. doi:

10.1016/j.jspi.2015.10.002.

[41] D. Duvenaud, Automatic model construction
with Gaussian processes, Doctoral thesis, Uni-
versity of Cambridge (2014). doi:10.17863/

CAM.14087.

[42] A. Morawiec, Method to calculate the grain
boundary energy distribution over the space
of macroscopic boundary parameters from the
geometry of triple junctions, Acta Materi-
alia 48 (13) (2000) 3525–3532. doi:10.1016/

S1359-6454(00)00126-9.

[43] D. L. Olmsted, A new class of metrics for the
macroscopic crystallographic space of grain
boundaries, Acta Materialia 57 (9) (2009)
2793–2799. doi:10.1016/j.actamat.2009.

02.030.

[44] A. P. Sutton, E. P. Banks, A. R. Warwick,
The five-dimensional parameter space of grain
boundaries, Proceedings of the Royal Society
A: Mathematical, Physical and Engineering
Sciences 471 (2181) (2015) 20150442. doi:

10.1098/rspa.2015.0442.

[45] T. Francis, I. Chesser, S. Singh, E. A. Holm,
M. De Graef, A geodesic octonion metric for
grain boundaries, Acta Materialia 166 (2019)
135–147. doi:10.1016/j.actamat.2018.12.

034.

[46] A. Morawiec, A New Metric for the Space
of Macroscopic Parameters of Grain Inter-
faces, Metallurgical and Materials Transac-
tions A 50 (9) (2019) 4012–4015. doi:10.

1007/s11661-019-05361-3.

[47] A. Morawiec, On distances between grain in-
terfaces in macroscopic parameter space, Acta

25

https://doi.org/10.1016/j.jeurceramsoc.2020.04.041
https://doi.org/10.1016/j.jeurceramsoc.2020.04.041
http://linkinghub.elsevier.com/retrieve/pii/S1359645410003277
http://linkinghub.elsevier.com/retrieve/pii/S1359645410003277
http://linkinghub.elsevier.com/retrieve/pii/S1359645410003277
https://doi.org/10.1016/j.actamat.2010.05.042
https://doi.org/10.1016/j.actamat.2010.05.042
http://arxiv.org/abs/math-ph/0009029
http://arxiv.org/abs/math-ph/0009029
http://doi.wiley.com/10.1029/94JB03097
http://doi.wiley.com/10.1029/94JB03097
https://doi.org/10.1029/94JB03097
https://doi.org/10.1029/94JB03097
https://linkinghub.elsevier.com/retrieve/pii/S135964542100149X
https://linkinghub.elsevier.com/retrieve/pii/S135964542100149X
https://linkinghub.elsevier.com/retrieve/pii/S135964542100149X
https://doi.org/10.1016/j.actamat.2021.116769
https://doi.org/10.1016/j.actamat.2021.116769
http://link.springer.com/10.1007/s10853-019-04125-z
http://link.springer.com/10.1007/s10853-019-04125-z
http://link.springer.com/10.1007/s10853-019-04125-z
https://doi.org/10.1007/s10853-019-04125-z
https://doi.org/10.1007/s10853-019-04125-z
http://www.tandfonline.com/doi/abs/10.1080/14786435.2012.722700
http://www.tandfonline.com/doi/abs/10.1080/14786435.2012.722700
http://www.tandfonline.com/doi/abs/10.1080/14786435.2012.722700
https://doi.org/10.1080/14786435.2012.722700
https://doi.org/10.1080/14786435.2012.722700
http://www.nature.com/articles/srep15476
http://www.nature.com/articles/srep15476
http://www.nature.com/articles/srep15476
https://doi.org/10.1038/srep15476
http://afst.cedram.org/item?id=AFST{_}2012{_}6{_}21{_}3{_}501{_}0
http://afst.cedram.org/item?id=AFST{_}2012{_}6{_}21{_}3{_}501{_}0
https://doi.org/10.5802/afst.1343
https://doi.org/10.5802/afst.1343
https://linkinghub.elsevier.com/retrieve/pii/S0378375815001640
https://linkinghub.elsevier.com/retrieve/pii/S0378375815001640
https://linkinghub.elsevier.com/retrieve/pii/S0378375815001640
https://doi.org/10.1016/j.jspi.2015.10.002
https://doi.org/10.1016/j.jspi.2015.10.002
https://doi.org/10.17863/CAM.14087
https://doi.org/10.17863/CAM.14087
https://doi.org/10.17863/CAM.14087
https://doi.org/10.17863/CAM.14087
http://linkinghub.elsevier.com/retrieve/pii/S1359645400001269 https://linkinghub.elsevier.com/retrieve/pii/S1359645400001269
http://linkinghub.elsevier.com/retrieve/pii/S1359645400001269 https://linkinghub.elsevier.com/retrieve/pii/S1359645400001269
http://linkinghub.elsevier.com/retrieve/pii/S1359645400001269 https://linkinghub.elsevier.com/retrieve/pii/S1359645400001269
http://linkinghub.elsevier.com/retrieve/pii/S1359645400001269 https://linkinghub.elsevier.com/retrieve/pii/S1359645400001269
https://doi.org/10.1016/S1359-6454(00)00126-9
https://doi.org/10.1016/S1359-6454(00)00126-9
http://linkinghub.elsevier.com/retrieve/pii/S1359645409001281 https://linkinghub.elsevier.com/retrieve/pii/S1359645409001281
http://linkinghub.elsevier.com/retrieve/pii/S1359645409001281 https://linkinghub.elsevier.com/retrieve/pii/S1359645409001281
http://linkinghub.elsevier.com/retrieve/pii/S1359645409001281 https://linkinghub.elsevier.com/retrieve/pii/S1359645409001281
https://doi.org/10.1016/j.actamat.2009.02.030
https://doi.org/10.1016/j.actamat.2009.02.030
https://royalsocietypublishing.org/doi/10.1098/rspa.2015.0442
https://royalsocietypublishing.org/doi/10.1098/rspa.2015.0442
https://doi.org/10.1098/rspa.2015.0442
https://doi.org/10.1098/rspa.2015.0442
https://linkinghub.elsevier.com/retrieve/pii/S1359645418309844
https://linkinghub.elsevier.com/retrieve/pii/S1359645418309844
https://doi.org/10.1016/j.actamat.2018.12.034
https://doi.org/10.1016/j.actamat.2018.12.034
https://doi.org/10.1007/s11661-019-05361-3 http://link.springer.com/10.1007/s11661-019-05361-3
https://doi.org/10.1007/s11661-019-05361-3 http://link.springer.com/10.1007/s11661-019-05361-3
https://doi.org/10.1007/s11661-019-05361-3 http://link.springer.com/10.1007/s11661-019-05361-3
https://doi.org/10.1007/s11661-019-05361-3
https://doi.org/10.1007/s11661-019-05361-3
https://linkinghub.elsevier.com/retrieve/pii/S1359645419306226
https://linkinghub.elsevier.com/retrieve/pii/S1359645419306226


Materialia 181 (2019) 399–407. doi:10.1016/
j.actamat.2019.09.032.

[48] F. C. Curriero, On the Use of Non-Euclidean
Distance Measures in Geostatistics, Mathe-
matical Geology 38 (8) (2007) 907–926. doi:

10.1007/s11004-006-9055-7.

[49] J. B. Boisvert, Geostatistics with Locally
Varying Anisotropy, Doctoral, University of
Alberta (2010). doi:10.7939/R31X5C.

[50] J. B. Boisvert, C. V. Deutsch, Programs
for kriging and sequential Gaussian simula-
tion with locally varying anisotropy using
non-Euclidean distances, Computers & Geo-
sciences 37 (4) (2011) 495–510. doi:10.1016/
j.cageo.2010.03.021.

[51] N. J. Higham, Computing a nearest symmet-
ric positive semidefinite matrix, Linear Alge-
bra and its Applications 103 (C) (1988) 103–
118. doi:10.1016/0024-3795(88)90223-6.

[52] J. D’Errico, nearestSPD (2020).

[53] A. Morawiec, Models of uniformity for grain
boundary distributions, Journal of Applied
Crystallography 42 (5) (2009) 783–792. doi:

10.1107/S0021889809025461.

[54] J. W. Cahn, J. E. Taylor, Metrics, mea-
sures, and parametrizations for grain bound-
aries: a dialog, Journal of Materials Science
41 (23) (2006) 7669–7674. doi:10.1007/

s10853-006-0592-8.

[55] M. E. Frary, C. A. Schuh, Grain boundary net-
works: Scaling laws, preferred cluster struc-
ture, and their implications for grain boundary
engineering, Acta Materialia 53 (16) (2005)
4323–4335. doi:10.1016/j.actamat.2005.

05.030.

[56] V. Y. Gertsman, K. Tangri, Computer simula-
tion study of grain boundary and triple junc-
tion distributions in microstructures formed
by multiple twinning, Acta Metallurgica et
Materialia 43 (6) (1995) 2317–2324. doi:

10.1016/0956-7151(94)00422-6.

[57] O. K. Johnson, C. A. Schuh, The uncorrelated
triple junction distribution function: Towards
grain boundary network design, Acta Materi-
alia 61 (8) (2013) 2863–2873. doi:10.1016/

j.actamat.2013.01.025.

[58] P. Fortier, W. Miller, K. Aust, Triple junc-
tion and grain boundary character distri-
butions in metallic materials, Acta Materi-
alia 45 (8) (1997) 3459–3467. doi:10.1016/

S1359-6454(97)00004-9.

[59] Y. Yi, J. Kim, Characterization methods of
grain boundary and triple junction distribu-
tions, Scripta Materialia 50 (6) (2004) 855–
859. doi:10.1016/j.scriptamat.2003.12.

010.

[60] P. Davies, V. Randle, G. Watkins, H. Davies,
Triple junction distribution profiles as assessed
by electron backscatter diffraction, Journal of
materials science 37 (19) (2002) 4203–4209.
doi:10.1023/A:1020052306493.

[61] W. H. Kruskal, Ordinal Measures of Asso-
ciation, Journal of the American Statistical
Association 53 (284) (1958) 814–861. doi:

10.1080/01621459.1958.10501481.

[62] M. E. Frary, C. A. Schuh, Correlation-space
description of the percolation transition in
composite microstructures, Physical Review E
76 (4) (2007) 42–45. doi:10.1103/PhysRevE.
76.041108.

[63] J. C. Fisher, Calculation of Diffusion Penetra-
tion Curves for Surface and Grain Boundary
Diffusion, Journal of Applied Physics 22 (1)
(1951) 74–77. doi:10.1063/1.1699825.

[64] C. Herring, Surface tension as a motivation
for sintering, in: W. E. Kingston (Ed.), The
Physics of Powder Metallurgy, McGraw-Hill,
New York, 1951, pp. 143–179.

[65] C. E. Rasmussen, C. K. I. Williams, Gaus-
sian Processes for Machine Learning, The MIT
Press, Cambridge, MA, 2006.

26

https://doi.org/10.1016/j.actamat.2019.09.032
https://doi.org/10.1016/j.actamat.2019.09.032
https://link.springer.com/article/10.1007/s11004-006-9055-7 http://link.springer.com/10.1007/s11004-006-9055-7
https://link.springer.com/article/10.1007/s11004-006-9055-7 http://link.springer.com/10.1007/s11004-006-9055-7
https://doi.org/10.1007/s11004-006-9055-7
https://doi.org/10.1007/s11004-006-9055-7
https://era.library.ualberta.ca/items/5acca59f-6e97-414d-ad13-34c8f97ce223
https://era.library.ualberta.ca/items/5acca59f-6e97-414d-ad13-34c8f97ce223
https://doi.org/10.7939/R31X5C
http://www.sciencedirect.com/science/article/pii/S0098300410002633 https://linkinghub.elsevier.com/retrieve/pii/S0098300410002633
http://www.sciencedirect.com/science/article/pii/S0098300410002633 https://linkinghub.elsevier.com/retrieve/pii/S0098300410002633
http://www.sciencedirect.com/science/article/pii/S0098300410002633 https://linkinghub.elsevier.com/retrieve/pii/S0098300410002633
http://www.sciencedirect.com/science/article/pii/S0098300410002633 https://linkinghub.elsevier.com/retrieve/pii/S0098300410002633
https://doi.org/10.1016/j.cageo.2010.03.021
https://doi.org/10.1016/j.cageo.2010.03.021
https://linkinghub.elsevier.com/retrieve/pii/0024379588902236
https://linkinghub.elsevier.com/retrieve/pii/0024379588902236
https://doi.org/10.1016/0024-3795(88)90223-6
http://scripts.iucr.org/cgi-bin/paper?cg5099 http://scripts.iucr.org/cgi-bin/paper?S0021889809025461
http://scripts.iucr.org/cgi-bin/paper?cg5099 http://scripts.iucr.org/cgi-bin/paper?S0021889809025461
https://doi.org/10.1107/S0021889809025461
https://doi.org/10.1107/S0021889809025461
https://link.springer.com/article/10.1007/s10853-006-0592-8 http://link.springer.com/10.1007/s10853-006-0592-8
https://link.springer.com/article/10.1007/s10853-006-0592-8 http://link.springer.com/10.1007/s10853-006-0592-8
https://link.springer.com/article/10.1007/s10853-006-0592-8 http://link.springer.com/10.1007/s10853-006-0592-8
https://doi.org/10.1007/s10853-006-0592-8
https://doi.org/10.1007/s10853-006-0592-8
http://linkinghub.elsevier.com/retrieve/pii/S1359645405003319
http://linkinghub.elsevier.com/retrieve/pii/S1359645405003319
http://linkinghub.elsevier.com/retrieve/pii/S1359645405003319
http://linkinghub.elsevier.com/retrieve/pii/S1359645405003319
https://doi.org/10.1016/j.actamat.2005.05.030
https://doi.org/10.1016/j.actamat.2005.05.030
http://linkinghub.elsevier.com/retrieve/pii/0956715194004226
http://linkinghub.elsevier.com/retrieve/pii/0956715194004226
http://linkinghub.elsevier.com/retrieve/pii/0956715194004226
http://linkinghub.elsevier.com/retrieve/pii/0956715194004226
https://doi.org/10.1016/0956-7151(94)00422-6
https://doi.org/10.1016/0956-7151(94)00422-6
http://linkinghub.elsevier.com/retrieve/pii/S1359645413000529
http://linkinghub.elsevier.com/retrieve/pii/S1359645413000529
http://linkinghub.elsevier.com/retrieve/pii/S1359645413000529
https://doi.org/10.1016/j.actamat.2013.01.025
https://doi.org/10.1016/j.actamat.2013.01.025
http://linkinghub.elsevier.com/retrieve/pii/S1359645497000049 https://linkinghub.elsevier.com/retrieve/pii/S1359645497000049
http://linkinghub.elsevier.com/retrieve/pii/S1359645497000049 https://linkinghub.elsevier.com/retrieve/pii/S1359645497000049
http://linkinghub.elsevier.com/retrieve/pii/S1359645497000049 https://linkinghub.elsevier.com/retrieve/pii/S1359645497000049
https://doi.org/10.1016/S1359-6454(97)00004-9
https://doi.org/10.1016/S1359-6454(97)00004-9
http://linkinghub.elsevier.com/retrieve/pii/S1359646203008121 https://linkinghub.elsevier.com/retrieve/pii/S1359646203008121
http://linkinghub.elsevier.com/retrieve/pii/S1359646203008121 https://linkinghub.elsevier.com/retrieve/pii/S1359646203008121
http://linkinghub.elsevier.com/retrieve/pii/S1359646203008121 https://linkinghub.elsevier.com/retrieve/pii/S1359646203008121
https://doi.org/10.1016/j.scriptamat.2003.12.010
https://doi.org/10.1016/j.scriptamat.2003.12.010
http://www.springerlink.com/index/k824332474318873.pdf
http://www.springerlink.com/index/k824332474318873.pdf
https://doi.org/10.1023/A:1020052306493
https://www.tandfonline.com/action/journalInformation?journalCode=uasa20 http://www.tandfonline.com/doi/abs/10.1080/01621459.1958.10501481
https://www.tandfonline.com/action/journalInformation?journalCode=uasa20 http://www.tandfonline.com/doi/abs/10.1080/01621459.1958.10501481
https://doi.org/10.1080/01621459.1958.10501481
https://doi.org/10.1080/01621459.1958.10501481
http://link.aps.org/doi/10.1103/PhysRevE.76.041108
http://link.aps.org/doi/10.1103/PhysRevE.76.041108
http://link.aps.org/doi/10.1103/PhysRevE.76.041108
https://doi.org/10.1103/PhysRevE.76.041108
https://doi.org/10.1103/PhysRevE.76.041108
http://aip.scitation.org/doi/10.1063/1.1699825
http://aip.scitation.org/doi/10.1063/1.1699825
http://aip.scitation.org/doi/10.1063/1.1699825
https://doi.org/10.1063/1.1699825
http://www.gaussianprocess.org/gpml/
http://www.gaussianprocess.org/gpml/

	Introduction
	Methods
	Datasets
	Data Uncertainty
	Diffusivity
	Energy

	Modeling Uncertainties
	Inference
	Defining the Fundamental Zone
	Designing the Covariance (Kernel) Function
	Crystallographic Symmetry
	No-boundary Singularity


	Results & Discussion
	Structure-Property Model Inference
	Uncertainty Propagation in Mesoscale Simulations
	Origin of Correlations Between Deff and Ji

	Conclusions and Future Outlook
	Converting GB Energy to Diffusivity
	Sampling the Posterior



