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Abstract

In this work we introduce the Voronoi fundamental zone octonion (VFZO) interpolation framework
for grain boundary (GB) structure-property models and surrogates. The VFZO framework offers an
advantage over other five degree-of-freedom (5DOF) based property interpolation methods because it
is constructed as a point set in a manifold. This means that directly computed Euclidean distances
approximate the original octonion distance with significantly reduced computation runtime (∼7 CPU
minutes vs. 153 CPU days for a 50 000 × 50 000 pairwise-distance matrix). This increased efficiency
facilitates lower interpolation error through the use of significantly more input data. We demonstrate
grain boundary energy (GBE) interpolation results for a non-smooth validation function and simulated
bi-crystal datasets for Fe and Ni using four interpolation methods: barycentric interpolation, Gaussian
process regression (GPR) or Kriging, inverse-distance weighting (IDW), and nearest neighbor (NN)
interpolation. These are evaluated for 50 000 random input GBs and 10 000 random prediction GBs. The
best performance was achieved with GPR, which resulted in a reduction of the root mean square error
(RMSE) by 83.0% relative to RMSE of a constant, average model. Likewise, interpolation on a large,
noisy, molecular statics (MS) Fe simulation dataset improves performance by 34.4 % compared to 21.2 %
in prior work. Interpolation on a small, low-noise MS Ni simulation dataset is similar to interpolation
results for the original octonion metric (57.6 % vs. 56.4 %). A vectorized, parallelized, MATLAB
interpolation function (interp5DOF.m) and related routines are available in our VFZO repository (gi
thub.com/sgbaird-5dof/interp) which can be applied to other crystallographic point groups. The
VFZO framework offers advantages for computing distances between GBs, estimating property values for
arbitrary GBs, and modeling surrogates of computationally expensive 5DOF functions and simulations.
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1. Introduction

1.1. Motivation

High fidelity GB structure-property models can
accelerate the design and understanding of ma-
terials for GB engineering applications such as
grain growth (GBE [1], mobility [2], and grain
rotation [3–6]), stress-corrosion cracking (diffusiv-

∗Corresponding author.
Email address: ster.g.baird@gmail.com (Sterling G.

Baird)

ity [7, 8], solubility [9], and segregation [10]) [11–
15], strength [16–18], ceramics [19, 20], electron-
ics [21, 22], and thermoelectrics [23]. With the in-
creased use of nanomaterials [16, 22], GBs take on
increasingly larger roles as the GB volume fraction
becomes significant; this is complicated by the fact
that properties of GBs can span orders of magni-
tude depending on the five macroscopic degrees of
freedom (DOFs) [24–26] as well as the three mi-
croscopic DOFs [27, 28]. However, the mentioned
studies generally only consider a binary classifi-
cation of GBs or variation of a few DOFs which
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represents a small “slice” of the full grain bound-
ary character (GBC) space. Recent advances in
high-throughput simulation [26, 29–35], experimen-
tal characterization [26, 34, 36–38], and availability
of rich GB datasets [33, 35, 39–47] warrant high-
fidelity structure-property models capable of han-
dling large amounts of input data to aid in the
aforementioned applications.

1.2. Prior Work

In prior work, a number of strategies have been
developed for predicting1 5DOF GB properties
from experimental or simulated data. Because dif-
ferent works use different validation functions and
data, it is difficult to objectively compare their per-
formance. To facilitate meaningful comparisons, in
addition to quoting absolute performance in terms
of RMSE or mean absolute error (MAE), we will
also report the percent reduction in error compared
to a constant-valued control model whose value is
chosen as the mean of the respective input data.

Several researchers have taken the approach of
discretizing unsymmetrized 5DOF GBC space, and
then using a least squares objective function and
gradient descent to fit a piecewise-constant func-
tion, resulting in 5DOF grain boundary energy dis-
tributions for nickel [41], yttria [48], and copper
[44] based on experimentally characterized 3D mi-
crostructures.

Restrepo et al. [49] used an artificial neural
network (ANN) and approximately 17 000 and
51 000 Fe bicrystal simulations from Kim et al. [39]
as training and validation data, respectively, to
achieve MAEs of 0.0486 J m−2 and approximately
0.09 J m−2 in the best fitted ANNs for randomly
selected and special GBs, respectively. If a con-
stant, average value (i.e. average of the input
GBEs) was chosen as the model, the MAE would
be 0.0617 J m−2, implying that predictions of ran-
domly selected GBs were improved by 21.2% rel-
ative to this simple, control model. Others have
combined machine learning approaches with large

1We use the term “predict” throughout this work to refer
to interpolation, inference, and/or extrapolation as some ap-
proaches can individually involve multiple prediction types.

lists of macroscopic and microscopic descriptors
[50, 51].

Recently, a new GB representation, grain bound-
ary octonions (GBOs), was reported [52] and tested
[53]. The GBO representation is valuable for a
number of applications. Most relevant to the
present work is the resulting distance metric. The
GBO distance metric offers an advantage over other
metrics in that it “correctly determines the angu-
lar distances between GBs with a common normal
or misorientation” and “closely approximates the
geodesic metric on SO(3) × SO(3) for all grain
boundary pairs while maintaining the ability to be
analytically minimized with respect to the U(1)
symmetry” [52]. In this context, Francis et al.
[52] derived octonion Spherical Linear Interpola-
tion (oSLERP) and provided examples showing
that oSLERP produces smooth, minimum distance
paths through GB character space between two ar-
bitrary GBs.

Laplacian kernel regression (similar to IDW) in-
volving scaled pairwise distance matrices was later
used with GBOs to predict properties of arbitrary
GBs from a set of known values [53]. Using k-fold
cross validation with k = 10 for 388 Ni GBE simu-
lations [43] and an optimized scaling parameter, a
RMSE of 0.0977 J m−2 was obtained compared to
a constant, average model RMSE of 0.2243 J m−2

(56.4 % improvement). Due to computation time
of pairwise distance matrices, this approach is cur-
rently “limited to datasets with several thousand
or fewer” GBs [53].

1.3. Voronoi Fundamental Zone Octonion Frame-
work

We present a new method for interpolating and
predicting GB properties from a set of measured/-
calculated values (e.g. GBE from MS simulations).
We term our approach the VFZO framework. It is
highly efficient and facilitates the use of large data
sets to enhance prediction accuracy. We discuss
motivation for (Section 1.1) and prior implemen-
tations of 5DOF property prediction (Section 1.2)
and then highlight unique properties of the VFZO
framework that offer advantages over other meth-
ods (Section 1.3).
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The VFZO interpolation framework introduced
in this work offers an advantage over other meth-
ods because it is defined as a Voronoi fundamen-
tal zone (VFZ) point set in a manifold2 for which
directly computed, scaled Euclidean distances ap-
proximate the original octonion distance given by
Francis et al. [52]. This advantage is manifest in
the ability to triangulate a mesh using standard
routines (e.g. quickhull [55]) and interpolate using
barycentric coordinates or machine learning meth-
ods such as GPR. Building on prior work on GBOs
[52, 53], we create a VFZ point set by obtaining
a set of octonions minimized with respect to Eu-
clidean distance and an arbitrary reference octo-
nion after considering all symmetrically equivalent
octonions (SEOs). Because GBOs are guaranteed
to reside on the surface of a hypersphere [52] (a
type of Riemannian manifold) a point set which lo-
cally resembles Euclidean space is the result (Sec-
tion 2.1.3). Below we provide the detailed descrip-
tion of the method, followed by numerical test re-
sults (Section 3).

We also provide a vectorized, parallelized im-
plementation of the VFZO framework and related
functions. These are contained in what we will re-
fer to as the VFZO repository, which is available at
github.com/sgbaird-5dof/interp. In what fol-
lows, when we refer to built-in MATLAB functions,
we refer to them with parentheses as in interp1().
When we refer to functions in the VFZO repository,
we do so with the .m extension as in interp5DOF.m

unless specifying the usage with arguments as in
interp5DOF(qm,nA,qm2,nA2,y).

2. Methods

We describe methods related to the VFZO frame-
work (Section 2.1.1), generation of random GBs
(Section 2.2), and four different GB property inter-
polation schemes (Section 2.3). We also describe
details regarding two simulated literature datasets
that we use (Section 2.4).

2“In mathematics, a manifold is a topological space that
locally resembles Euclidean space” [54]. By removing the
Euclidean approximation in the VFZO framework, the met-
ric becomes intrinsic [54].

2.1. The Voronoi Fundamental Zone Octonion
Framework

The core operations of the VFZO framework are:

1. generating GBOs (Section 2.1.1)

2. mapping GBOs into a VFZ (Section 2.1.2)

3. calculating distances within the VFZ (Sec-
tion 2.1.3)

2.1.1. Defining the Voronoi Fundamental Zone

Three degree-of-freedom fundamental zones
(FZs) have typically been defined using linear in-
equalities (e.g. the orientation [56] and misorienta-
tion [56, 57] FZs). Instead of using linear inequali-
ties3, we take a numerical approach to define what
we will call a VFZ.

To define a VFZ, an arbitrary, fixed, low-
symmetry reference GBO is chosen (oref) and the
VFZ is formally defined as the region of S7 (the unit
7-sphere in 8 dimensions) closer to oref than any of
its symmetric images4. However, use of the VFZ
does not require its explicit construction. Rather,
practical calculations require only the selection of
the single point oref (which completes the definition
of the VFZ), followed by mapping of query points
into the VFZ by comparison of their SEOs with
oref.

To illustrate the process of mapping points into
the VFZ, we describe a 3D Cartesian analogue (Fig-
ure 1) to a 7D Cartesian non-degenerate (i.e. U(1)
degeneracy removed) representation of a VFZ. A
set of 500 points (pi, i ∈ [1, 500]) randomly scat-
tered on the surface of the 2-sphere comprise the
data (red points in Figure 1a). A random point,
pref, also on the surface of the 2-sphere, is chosen

3If desired, linear inequalities can be obtained for a VFZ
by determining a Voronoi tessellation’s junction points (sim-
ilar to what is shown in Figure 1 by e.g. voronoin()), trans-
forming to 6D Cartesian coordinates via a singular value de-
composition (SVD) transformation (Appendix B) and defin-
ing the bounded region by e.g. MATLAB FEX function
vert2lcon.m.

4We also refer to lower-dimensional representations of the
8D Cartesian VFZ as VFZs (described in Section 2.1.2) and
describe which dimensionality we are referring to as appro-
priate.
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as the reference point (white circle). In this illus-
tration, Oh or m3̄m point group rotations are used
as symmetry operators, Sj, j ∈ [1, Np], where Np

is the number of proper rotations as before and
Np = 24 for the Oh point group. For each data
point, 24 symmetrically equivalent representations
(psym

i,j = Sj(pi), j ∈ [1, 24]) are produced by apply-
ing each of the relevant symmetry operators. Af-
ter calculating the Euclidean distance between pref

and psym
i,j , the point (p∗i ) closest to pref is chosen

and retained as the unique representative of psym
i,j .

As illustrated in Figure 1a, the projected points
p∗i (dark blue points) all fall in the VFZ without
ever having to construct or define it explicitly, we
call this group of projected points a VFZ point set.
Note also that there is only one p∗i in the VFZ for
each psym

i,j (see Figure 1b).

To calculate the distance between a given octo-
nion, and the reference octonion, we employ the
standard 8D Euclidean distance

dE(oA, oB) =

(
8∑

k=1

(oA,k − oB,k)2

)1/2

(1)

where oA,k and oB,k represent the k-the element of
normalized octonions oA, and oB, respectively.

Euclidean distance is an approximation to the
true geodesic arc length on S7, which is given by

dS(oA, oB) = cos−1 (oA · oB) (2)

where · is the dot product, cos−1 is the inverse co-
sine operator, and oA and oB are each normalized
and dS ' dE (Figure S1). In [52], the original octo-
nion distance metric was defined by

dΩ(oA, oB) = 2 cos−1 (oA · oB) (3)

where oA and oB are each normalized and dΩ can
be seen to be simply twice the geodesic arc length:
dΩ = 2dS. Thus, dE ' 1

2
dΩ.

The definition of dΩ has certain aesthetic ben-
efits in that it mirrors the definition of a misori-
entation angle, ωAB, between two crystal orienta-
tions in the quaternion parameterization: ωAB =
2 cos−1 (qA · qB).

Our choice to use dE instead of dS or dΩ is moti-

vated by the fact that it enables the use of standard
algorithms, for a variety of operations, that require
or assume Euclidean distances. In addition to en-
abling us to leverage the machinery of efficient and
established algorithms, this choice can be justified
by the following observations:

• The minimum Euclidean distance SEO will be
the same as the minimum arc length distance
SEO because dS is a monotonically increasing
function of dE, for dS(dE) ∈ [0, π] (Figure S1).

• For the FCC point group symmetry (m3̄m) the
portion of S7 subtended by the VFZ is suffi-
ciently small that the approximation dE ' dS

holds to very high accuracy5 as shown in Fig-
ure S1.

• Calculation of dE does not require the use
of any inverse trigonometric functions and is
about 23 % faster than calculation of dS or dΩ.

For applications other than interpolation
which require precise quantification of high-
dimensional volume, a mapping between
Euclidean-approximated volumes and true volumes
may be necessary6 or the Euclidean approximation
may be removed altogether7. The latter allows for
the (non-ensembled) VFZO metric to be intrinsic
(see Morawiec [54] for an in-depth treatment of
intrinsicality).

The expectation that a single, unique SEO will
be found (within numerical tolerance and given a
low-symmetry reference GBO8) is verified by sev-
eral manual tests and internally within the sym-
metrization sub-routine get_octpairs.m [59] that

5This is true for a specific pair of octonions within a VFZ.
When calculating the minimum distance between SEOs of
two points, there are additional considerations that must be
attended to as discussed in detail in Section 2.1.3.

6We have not tested to what extent a Euclidean-
approximated volume will differ from the true volume; how-
ever, Euclidean-approximated volumes can be obtained by
using the triangulation methods discussed in Appendix B.1
(i.e. convhulln().

7i.e. by setting the matlabdtype argument of GBdist4.m
to 'omega' rather than 'norm'.

8The probability that a randomly generated GBO will
fall exactly on a high-symmetry boundary vanishes in the
limit of infinite precision.
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Figure 1: (a) 3D Cartesian analogue to a non-degenerate 7D Cartesian representation of U(1)-symmetrized GBOs and
VFZOs (VFZOs are inherently U(1)-symmetrized) which demonstrates the symmetrization of many points relative to
a fixed reference point (white circle). This produces a 3D Cartesian VFZ point set (dark blue points). (b) To further
illustrate, a single input point (magenta points) is symmetrized (dark blue point) relative to a fixed reference point (white
circle), demonstrating that only one symmetrized point is found within the borders (black) of each of the Voronoi cells
(light blue). The Voronoi tessellation is defined by the symmetric images of the reference point, and the spherical Voronoi
diagram for this illustration is constructed using a modified version of [58].

is part of the interp5DOF.m package. Similar nu-
merical tests reveal that inappropriately selecting
a high-symmetry reference GBO to (attempt to)
define a VFZ results in many degenerate mini-
mum distance SEOs, with the identity octonion
({1, 0, 0, 0, 0, 0, 0, 0} ∈ R8) [52] giving the highest
degeneracy.

2.1.2. Mapping GBs to the Voronoi Fundamental
Zone

As described above in the 3D analogy, with a
reference GBO chosen (oref), and consequently the
VFZ defined (Section 2.1.1), a GBO is mapped into
the VFZ by finding among its SEOs the one that
is closest to oref according to dE (Eq. (1)). This is
performed for all input and prediction points with
respect to oref, and the result is a VFZ point set.

2.1.3. Distance Calculations in the Voronoi Fun-
damental Zone

Euclidean distances are an accurate approxima-
tion of arc length distances in a VFZ because the
difference between the two metrics for the maxi-
mum pairwise distance (pdmax ' 60°) in a VFZ is
small as shown in Figure S1. However, when com-
pared with the traditional octonion distance [52],

due to the presence of low-symmetry GBs near the
exterior of a VFZ, some GB pairs will exhibit larger
Euclidean or arc length distances than is truly rep-
resentative (see e.g. Figure 3a). In other words,
moving “past” the low-symmetry border of a VFZ
will result in an instantaneous relocation to a pos-
sibly distant point in the VFZ that in reality is
highly correlated.

This is a limitation of the VFZO framework,
which generates a VFZ with low-symmetry GBs
at the borders in contrast to typical FZs [60, 61].
While defining a FZ with high-symmetry GBs at
the borders (especially mirror-symmetry GBs) will
certainly increase interpolation accuracy, the favor-
able interpolation results presented in this work
are obtained because overestimation is infrequent
within a small correlation length (e.g. 10° [42],
which many NNs fall within for a 50 000 VFZO
set, see Figure 2b), and underestimation is non-
existent within numerical precision. Naturally,
smaller dataset pairwise distance matrices will ex-
hibit more frequent distance overestimation.

Overestimation imposes a “sparseness” of data
within a local region of influence common to the
interpolation methods in this work, whereas under-
estimation would give erroneous high correlations

5



Figure 2: (a) Histogram of NN octonion distances (ω) in a VFZO set of 50 000 points. The average NN distance was
(2.870 90± 0.691 12)°. (b) The average k-th nearest neighbor distances demonstrate that many nearest neighbors fall
within a tight tolerance (less then 10°) out of approximately 10 trial runs.

between uncorrelated GBs. Because only overes-
timation relative to traditional octonion distances
exist in this work (as shown in Figure 3), we ex-
pect that large errors will occur infrequently (Sec-
tion 3.1).

While distance calculations are subject to these
infrequent overestimates, they are largely immate-
rial for interpolation. This is because all interpo-
lation methods in this work involve a region of in-
fluence that is small, so that if the distance to a
NN is overestimated it simply does not contribute
to the interpolation (the “sparseness” referred to
earlier). Consequently the accuracy of the inter-
polation is not significantly impacted by infrequent
distance overestimates, and excellent results can be
achieved without addressing this limitation. How-
ever, if even greater accuracy is desired it can be
obtained for a relatively minor cost by considering
multiple VFZs.

We find that taking the minimum distance
among several VFZO sets defined by separate refer-
ence octonions leads to better correlation between
the Euclidean approximation and the traditional
octonion metric as shown in Figure 3. Additionally,

Figure 4 shows that the error between scaled Eu-
clidean distance and the traditional octonion met-
ric decreases rapidly as the number of ensemble
VFZO components increases. This confirms that
employing a small ensemble of VFZO sets results in
significant improvement to the Euclidean distance
approximation (Figures 3 and 4) of the traditional
octonion metric. However, as already mentioned,
improvements to interpolation results are expected
to be less significant since they are already robust
to occasional distance overestimates. In terms of
computational runtime, use of an ensemble of 10
VFZs will increase runtime by a factor of ∼10 via
a loop-based implementation. For a symmetrized
50 000 × 50 000 pairwise distance matrix, this re-
sults in a runtime of approximately 1 CPU hour
instead of ∼7 CPU minutes for a single VFZ. How-
ever, this is still much faster than the original oc-
tonion approach used in [53], which would take an
estimated 6.6 CPU years using the original imple-
mentation (or 153 CPU days if one GB in the GB
pair is fixed according to the assumption in Moraw-
iec [54]). Additionally, it may be worthwhile to
make the distance calculations GPU-compatible for
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Figure 3: Hexagonally binned parity plots of pairwise distances of 388 Ni bicrystals [43]. Euclidean distance approximation
is converted to octonions (xi,j,k = 2

(
180
π

)
|ôsymi,k − ô

sym
j,k |) for comparison with the traditional octonion metric [53]. The

minimum distance among an ensemble of VFZO sets (min∀k∈[1,kmax] xi,j,k) is used for (a) 1, (b) 2, (c) 10, and (d) 20
VFZO sets. As the number of VFZO sets increases, the correlation between the Euclidean distance and the traditional
octonion distance improves.

further speed-up.

VFZO Euclidean, hyperspherical arc length, and
octonion distances are computed via VFZO reposi-
tory function GBdist4.m which is used in the sym-
metrization function get_octpairs.m and an ex-
ample of ensemble VFZO distance calculations is
given in plotting.m.

In addition to their use for distance calculations
alone, ensembles of VFZO sets can be employed
with interpolation methods to increase overall in-
terpolation accuracy, but there is a computational
cost (e.g. approximately 10× using an ensemble

of 10 VFZO sets). For 50 000 input points, use of
an ensemble with 10 VFZO sets decreases RMSE
and MAE from 0.0241 J m−2 and 0.0160 J m−2 to
0.0187 J m−2 and 0.0116 J m−2, respectively (single
trial run). We expect these overall accuracy im-
provements occur because GBE predictions near
the exterior of the VFZ where data may be sparse
are improved. Ensemble interpolation results as
a function of ensemble size and parity plots for
mean, median, minimum, and maximum functions
applied to the ensemble are shown in Figure S5 and
Figure S6, respectively. Further details of ensemble

7



Figure 4: RMSE and MAE of pairwise distance errors for
388 Ni bicrystals [42] of scaled Euclidean distance approxi-
mation relative to the traditional octonion metric [53] (com-
pare with Figure 3). The minimum distance among an en-
semble of VFZO sets (min∀k∈[1,kmax] xi,j,k, where xi,j,k is the
scaled Euclidean distance) is taken, iteratively adding con-
secutive sets up to kmax = 20. As the number of VFZO
sets increases, RMSE and MAE between the scaled Eu-
clidean distance approximation and the traditional octonion
distance decreases.

interpolation are given in Section S3.

2.1.4. Comparison with Traditional Octonion
Framework

We compare the VFZO framework with the tra-
ditional octonion metric (Table 1) and give exam-
ples that illustrate the computational complexity
of each approach.

The construction of the VFZ dramatically re-
duces the computational burden of pairwise dis-
tance calculations. The mechanism by which this
reduction is achieved can be illustrated with an ex-
ample. Let o1 and o2 denote two GBs represented
in GBO coordinates. To perform a traditional sym-
metrized GBO distance calculation according to
Francis et al. [52], we compare all SEOs of o1 to all
of the SEOs of o2 and take the smallest distance.
If Np is the number of proper rotations of the crys-
tallographic point group, this single minimum dis-

tance calculation requires a total of 4N4
p SEOs to

be considered (Sections 4.3 and 4.5 of Francis et al.
[52]). The total number of SEO computations will
be 4N4

pL
2. However, it is possible to fix a single

GB in the GB pair and still obtain accurate9 due
to isometry equivalence (see Section 7 of [54] and
Figure S2).

In contrast, for a single distance calculation using
the VFZO framework, o1 and o2 are first mapped
into the VFZ, and then only a single distance calcu-
lation is required between them. Mapping o1 into
the VFZ requires comparison of 8N2

p SEOs10 of o1

with a fixed reference GB in the interior of the VFZ;
and likewise for o2. Consequently, a single distance
calculation between o1 and o2 under the VFZO
framework requires O(N2

p ) SEO computations. If
one desires to compute a pairwise distance matrix
between L GBs, the total computational cost11 will
be O(N2

pL), which represents a dramatic reduction
compared to the traditional approach. A summary
of the differences between the two approaches is
provided in Table 1.

2.2. Generating Random Voronoi Fundamental
Zone Octonions

In addition to the 3 core operations of the VFZO
framework described in Section 2.1, it will be neces-
sary for our tests, and useful for other applications,
to be able to generate random GBOs from 5DOF
representations. We briefly explain here our pro-
cess for accomplishing this.

First, random GBOs are formed by taking ran-
dom misorientation quaternion (qm) and boundary
plane normal (nA) pairs. Random misorientation
quaternions are obtained via cubochoric sampling

9Compared with the pairwise distance matrix of the 388
Olmsted GBs, we obtained a RMSE of 1.6566× 10−7° for
this computation which completed in 133 s using 6 cores (see
get_pd_fix.m)

10This is 8 instead of 4 because the simplifying assumption
that only two of the four double cover cases need to be con-
sidered [52] does not apply in the VFZO framework. This is
confirmed by applying uniquetol() on a set of 4608 octo-
nions which has a final set size of 4608, where 4608 = 8×N2

p

and Np = 32 (see osymset.m).
11See Section 3.2.2 for a detailed explanation of why this

is not O(N2
pL

2).
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Table 1: Comparison between Voronoi fundamental zone octonion and traditional octonion frameworks. *6D Cartesian
representation used only for mesh triangulation efficiency in barycentric interpolation and *7D Cartesian representation
only required for barycentric interpolation. 7D Cartesian representation is also implemented (though not required) for
GPR, NN, and IDW. For pairwise distance complexity, Np is the number of proper rotations (Np = 24 for m3̄m face-
centered cubic point group) and L is the number of GBs.

Property Traditional This Work

Symmetrizing Distance GBO VFZ Euclidean
Dimensionality 8D Cartesian 6*/7*/8D Cartesian
Bounded by FZ No Yes

Pairwise Distance Complexity O(N2
pL

2) O(N2
pL)

Rotation Convention Passive Active

[62] (get_cubo.m) and random boundary plane
vectors are sampled from a multivariate Gaussian
distribution (µ = 0, σ = 1) in R3 and normalized12.
After this, they are converted to GBOs via VFZO
repository function five2oct.m. The VFZO repos-
itory function get_five.m returns the result of
these several operations. These (qm,nA) pairs are
then converted to an octonion representation, o, us-
ing VFZO repository function o=five2oct(qm,nA)

(see also VFZO repository function get_ocubo.m

for generating random GBOs directly).

The GBOs are then symmetrized (i.e. they be-
come VFZOs) via osym=get_octpairs(o). A de-
fault reference octonion13 is used for these calcula-
tions, unless specified by the user. We use the ac-
tive convention for qm, nA, and o (see Appendix A
for further details of conventions).

For the present work we use this procedure to
randomly generate VFZO sets containing between
100 to 50 000 VFZOs where each trial run has its
own unique set of GBs. We use these to perform
the validation and performance evaluation tests de-

12Several methods for uniform sampling of points on a
sphere, including the one mentioned here, are described in
https://mathworld.wolfram.com/SpherePointPicking

.html.
13This is generated by get_ocubo.m using a random num-

ber generator seed of 10. We expect that five2oct.m com-
bined with get_five.m will generate near identical statisti-
cal properties to get_ocubo.m which is supported by a vi-
sual comparison of pairwise distance histograms (not shown
in this work), and indirectly by an assertion in Section 5.3
of Morawiec [54].

Figure 5: NN VFZO (ωNN) distances (◦) versus VFZO set
size out of 70-80 random VFZO sets per set size.

scribed later. For reference, we note that the aver-
age NN distance (over approximately 70 trials) of
such sets ranges between (10.7175± 0.3684)° and
(2.6479± 0.2254)°, respectively.

Figure 5 illustrates how the VFZO average NN
distance varies with the cardinality of the set (i.e.
number of random VFZOs in the set). For a spe-
cific 50 000 VFZO set, the NN octonion distance is
(2.870 90± 0.691 12)° (Figure 2a) while the average
100-th NN distance is within 10° (Figure 2b). This
indicates that, on average, prediction VFZOs fall
within a typical GB correlation length (10° [42]) of
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input VFZOs in large set sizes.

2.3. Interpolation in the Voronoi Fundamental
Zone Octonion Framework

With the VFZO framework established, it is pos-
sible to define interpolation schemes over the VFZ
to predict the properties of new GBs from the
known properties of other GBs. For one applica-
tion of interest to us, it is necessary to evaluate
multiple different functions over a fixed set of in-
put and prediction GBOs. In this section we first
present a barycentric interpolation method that we
have developed to efficiently accomplish this spe-
cialized task by pre-computing the interpolation
weights (which remain fixed when only the func-
tion being evaluated changes). We then present
adaptations of three other interpolation methods—
GPR (Section 2.3.2), IDW (Section 2.3.3), NN
(Section 2.3.4)—that are useful for general ap-
plications (an additional interpolation method—
Gaussian process regression mixture (GPRM)—
which we developed specifically for a non-uniformly
distributed, noisy, simulation dataset is described
in Section 2.4.3). Usage instructions for the VFZO
repository can be found at the GitHub page (gi
thub.com/sgbaird-5dof/interp) and in Sec-
tion S0.1.

2.3.1. Barycentric Interpolation

Barycentric coordinates are a type of homoge-
neous coordinate system that reference a predic-
tion point within a simplex [63] or convex polytope
[63–65] based on “masses” or weights at the ver-
tices, which can be negative. The prediction point
is assumed to be the barycenter (center of mass) of
the simplex or convex polytope, and weights at the
vertices necessary to make this assumption true are
determined. We utilize rigid SVD transformations
and a standard triangulation algorithm (quickhull
[55] via delaunayn() in VFZO repository function
sphconvhulln.m) to define a simplicial mesh (Ap-
pendix B.1). We then use barycentric weights (i.e.
coordinates) for computing intersections of a point
within a simplicial facet (Appendix B.2) and for
interpolation (Appendix B.3) [63]. A detailed ex-
planation of the process is provided in Appendix B.

2.3.2. Gaussian Process Regression

GPR or Kriging uses the notion of similarity
between points to fit Gaussian processes (ran-
dom variables) to data based on prior informa-
tion and provides uncertainty information in ad-
dition to interpolated or inferred values. For a
general treatment of GPR, see Rasmussen and
Williams [66]. We use MATLAB’s built-in func-
tion, fitrgp(), with all default parameters14 ex-
cept that a fully independent conditional approxi-
mation is used (PredictMethod = 'fic') regard-
less of the number of input points. We as-
sume a Euclidean approximation of the VFZ (see
Section 2.1.3 and Figure S1). A slower, more
accurate, and more memory-intensive prediction
method that doesn’t use sparse approximation
(PredictMethod = 'exact') is also available (Sec-
tion 3.2).

2.3.3. Inverse-distance Weighting Interpolation

IDW interpolation applies a weighted average to
points within a neighborhood of a query point to
obtain an interpolated value. interp5DOF.m imple-
ments a simple IDW approach based on [67]. A de-
fault radius of influence of r =

√
2µ is used, where µ

represents the mean NN distance, and where octo-
nion distance is approximated by the Euclidean dis-
tance or 2-norm (see Section 2.1.3, and Figure S1).
NN interpolation (Section 2.3.4) is used for a given
query point when there are no input points in the
radius of influence.

2.3.4. Nearest Neighbor Interpolation

NN interpolation takes the nearest input point
relative to a query point and assigns the value
of the NN input point to the query point. This
is implemented via the built-in MATLAB func-
tion dsearchn() using a Euclidean approximation
of octonion distance (see Section 2.1.3, and Fig-
ure S1).

14MATLAB R2020b was used for the Fe simulation
dataset, all other results employed MATLAB R2019b, the
latest installed version on our computing cluster.
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2.4. Literature Datasets

In addition to performing validation tests of the
VFZO framework, we also describe results in which
we apply it to actual GB property data available
from literature sources. Here we briefly mention
details related to the retrieval and processing of two
MS simulation datasets from the literature. We de-
scribe GPR applied to Fe (Section 2.4.1) and Ni
(Section 2.4.2) simulations, as well as a special-
ized GPRM model applied to Fe to address non-
uniformity and noise concerns (Section 2.4.3).

2.4.1. Gaussian Process Regression for Fe Simula-
tion Dataset

The Fe simulation data is obtained from [68]
rather than [39] due to a mistake in the earlier
dataset file15. GBs with a GBE less than 0.01 J m−2

are removed to get rid of “no-boundary” GBs. Re-
peated GBs are then identified and removed by con-
verting all GBs into a VFZO set (see Kim2oct.m)
and sorting the repeated GBs into “degenerate
sets”16, and only the average GBE (and a sin-
gle GB) within each degenerate set was retained.
We estimate the intrinsic RMSE and MAE of the
Fe simulation dataset to be 0.065 29 J m−2 and
0.061 90 J m−2, respectively. Minimum and max-
imum error was −0.2625 J m−2 and 0.2625 J m−2,
respectively. See Section S5.2 for further details on
methods used to estimate intrinsic error of the Fe
simulation dataset.

2.4.2. Gaussian Process Regression for Ni Simula-
tion Dataset

We use the GBOs representations [53] of GBs
from [42] ('olm_octonion_list.txt' [69]), im-
porting and converting them to the active sense
by taking the quaternion inverse of each of the oc-
tonions’ quaternions. We take GBE values (first
column of 'olm_properties.txt', [69]), and use
a GPR model (Section 2.3.2).

15We were informed of the error during an email discussion
with the corresponding author of [68].

16A degenerate “set” is distinct from a VFZOs “set”, the
former of which is discussed in greater detail in Supple-
mentary Information Section S5.2. This sorting occurs via
avgrepeats.m with avgfn='min'.

2.4.3. Gaussian Process Regression Mixture for Fe
Simulation Dataset

Separate from the four main methods analyzed
in this work, a GPRM model is developed to bet-
ter predict low GBE using the non-uniformly dis-
tributed, noisy, Fe simulation dataset described
in Section 2.4.1. An exponential rather than a
squared exponential kernel was used for the subset
GPR model (Section S5) to accommodate sharper
transitions to better approximate low GBEs. Fur-
ther details of the GPRM model are given in Sup-
plementary Information (Section S5).

3. Results and Discussion

To illustrate the utility of the VFZO framework
for one application, namely interpolation, we com-
pare the (i) accuracy (Section 3.1), and (ii) effi-
ciency (Section 3.2) of the four previously described
interpolation methods implemented over the VFZ
with each other and with existing methods from
the literature (see Section 1). For these tests, we
use the 5DOF GB energy function by Bulatov et al.
[70] (trained on Ni bicrystal simulation data [42])
as a validation function which we refer to as the
Bulatov Reed Kumar (BRK) function.

Following this validation study, we also demon-
strate VFZO GPR interpolation applied to a large,
noisy, MS Fe bicrystal simulation dataset [68] and
a small, low-noise, MS Ni bicrystal simulation
dataset [42] (Section 3.4.1), to evaluate perfor-
mance on real GB property data.

3.1. Interpolation Accuracy

Accuracy of GPR, barycentric, NN, and IDW in-
terpolation methods are given w.r.t. the BRK val-
idation function (Section 3.1.1). Context is given
to these error metrics through comparison with a
constant-valued control model (Section 3.1.2) and
the uncertainty associated with experimental and
simulated datasets (Section 3.1.3).

3.1.1. Accuracy of Four Interpolation Methods

Figure 6 provides hexagonally binned parity
plots (parityplot.m via modified version of [71])
for each of the four interpolation methods using
50 000 input GBs. Results for 388 and 10 000 GBs
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are given in Figure S3 and Figure S4, respectively.

All of the methods permit successful interpola-
tion, and the highest density region in all cases
falls squarely on the parity line. The GPR and
barycentric results show a slight asymmetry such
that low energy values are overpredicted more of-
ten than they are underpredicted. The width of
the point clouds provides a qualitative indication
of the dispersion in the prediction errors, and the
logarithmically scaled color indicates the frequency
of errors of a given magnitude. As can be seen, the
vast majority of errors are very small (the highest
density—yellow region—is concentrated on the line
of parity). Quantitative measures of the overall ac-
curacy are presented for RMSE (Table 2) and MAE
(Table 3), and will be discussed in detail below (see
get_errmetrics.m).

As shown in Tables 2 and 3, of the four interpo-
lation methods from this work, GPR has the lowest
error, both in terms of RMSE and MAE, while NN
has the highest error. Compared to a constant val-
ued control model, GPR interpolation reduced the
prediction RMSE by 83 %, which outperforms all
of the interpolation methods in this work with re-
spect to accuracy, as well as those considered from
the literature. After GPR the next most accu-
rate methods are barycentric, IDW, and NN We
also note that the RMSE interpolation error for
the GPR and barycentric methods is comparable
to the minimum achievable noise-free experimental
interpolation error which is the estimated error in
experimental data (Section 3.1.3).

The accuracy of the predictions made using the
VFZ methods depends on the VFZO set size and
distribution. Figure 7 compares the prediction ac-
curacy for each of the 4 methods to the constant
valued control model, as a function of the num-
ber of input VFZOs (ninputpts). As expected,
higher density VFZO sets result in lower error,
but eventually give diminishing returns. Moreover,
the standard deviations produced via multiple runs
are tightly constrained and generally shrink as the
VFZO set size increases.

GPR consistently gives lower error than the other
three interpolation methods for all VFZO set sizes.
NN interpolation produces the worst error of the

four methods, but is better than a constant valued
control model (i.e. average of the input GBEs) so
long as ninputpts exceeds a few hundred input
points.

It is worthwhile to note that both GPR and IDW
are kernel-based in that a model parameter con-
trols the size of the region that can influence the
interpolation results. In the GPR case, this is au-
tomatically calculated via an internal fitting rou-
tine of fitrgp(). NN distance distributions (Fig-
ure 2) can lead to insight about correlation lengths
in a given VFZO set and are used in the IDW im-
plementation. For IDW, the radius of influence
is set to r =

√
2µ, where µ is the mean NN dis-

tance. It is likely that better tuning of the kernel
parameters in these two methods (such as use of
built-in hyperparameter optimization in the case
of fitrgp()) could further decrease their interpo-
lation errors. Additionally, for GPR, use of the
'exact' predictMethod or a larger 'fic' set size
will also likely reduce interpolation error.

By contrast, barycentric interpolation automat-
ically adjusts its effective region of influence be-
cause the size of the simplices in the mesh de-
creases as the number of vertices increases. More
uniformly distributed meshes (such as obtained via
constrained optimization [72, 73]) will likely result
in lower, more uniform interpolation error, espe-
cially for this simplex-based approach which can ex-
hibit high-aspect ratio facets and non-intersections
outside the bounds of the mesh (Figure S7). While
the barycentric interpolation error is always higher
than GPR for the considered set sizes, at 50 000
VFZOs, the errors of GPR and barycentric inter-
polation are nearly identical.

3.1.2. Constant-Valued Control Models

To aid in objective interpretation of the error
metrics, comparison is made to a constant valued
control model, whose value is chosen to be the av-
erage of y (approximately 1.16 J m−2 in the limit
of ninputpts→∞) resulting in RMSE and MAE
values of approximately 0.1283 and 0.0955 J m−2.
This comparison with the relevant constant-valued
function gives a sense of the complexity and vari-
ability of the validation function and allows for a
more objective comparison between differing works.
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Figure 6: Hexagonally binned parity plots for 50 000 input and 10 000 prediction octonions formed via pairs of a random
cubochorically sampled quaternion and a spherically sampled random boundary plane normal. Interpolation via (a) GPR,
(b) IDW, (c) NN, and (d) barycentric coordinates. BRK GBE function for face-centered cubic Ni [70] was used as the
test function.

Table 2: Comparison of average interpolation RMSE (approximately 10 trial runs) for each interpolation method in the
present work, using 50 000 points in the definition of the VFZ and GBEs obtained by evaluating the BRK validation
function ([70]) at these points. A constant model (Cst, Avg RMSE), whose value was chosen to be the mean of the input
GBE was used as a control. The last two columns represent the reduction (↓) in RMSE in absolute units of J m−2 and %
relative to the control model, respectively.

Method Distance Dataset # GBs
RMSE
(J m−2)

Cst, Avg RMSE
(J m−2)

RMSE ↓
(J m−2)

RMSE ↓
(%)

GPR VFZ BRK 50 000 0.0218 0.1283 0.1065 83
Barycentric VFZ BRK 50 000 0.0238 0.1283 0.1045 81.4
IDW VFZ BRK 50 000 0.0356 0.1283 0.0927 72.3
NN VFZ BRK 50 000 0.0445 0.1283 0.0838 65.3
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Table 3: Comparison of average interpolation MAE (approximately 10 trial runs) for each interpolation method in the
present work, using 50 000 points in the definition of the VFZ and GBEs obtained by evaluating the BRK validation
function ([70]) at these points. A constant model (Cst, Avg MAE), whose value was chosen to be the mean of the input
GBE was used as a control. The last two columns represent the reduction (↓) in MAE in absolute units of J m−2 and %
relative to the control model, respectively.

Method Distance Dataset # GBs
MAE

(J m−2)
Cst, Avg MAE

(J m−2)
MAE ↓
(J m−2)

MAE ↓
(%)

GPR VFZ BRK 50 000 0.0145 0.0955 0.081 84.8
Barycentric VFZ BRK 50 000 0.0145 0.0955 0.081 84.8
IDW VFZ BRK 50 000 0.0225 0.0955 0.073 76.4
NN VFZ BRK 50 000 0.0307 0.0955 0.0648 67.9

Figure 7: (a) Average RMSE and (b) average MAE vs. number of input points for (planar) barycentric (blue), GPR
(orange), IDW (yellow), and NN (purple) interpolation for approximately 10 random runs with different input and predic-
tion points. Standard deviations of approximately 10 runs are also included. Compare with approximately 0.1283 J m−2

and 0.0955 J m−2 RMSE and MAE, respectively, for a constant, average model (green) using the average of the input
properties (approximately 1.16 J m−2).

Table 4: Approximate coordinates of VFZOs A and B used for the interpolation in Figure 8. Individual quaternions of
each octonion are given in the active sense and in the laboratory reference frame with an assumed GB normal pointing in
the +z direction, also in the laboratory reference frame.

Octonion o(1) o(2) o(3) o(4) o(5) o(6) o(7) o(8)

A 0.8658 -0.4269 -0.1270 0.2280 0.2810 0.8390 -0.3852 0.2622
B 0.4684 -0.7657 -0.4100 -0.1617 -0.1483 0.8204 -0.3588 0.4198
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Figure 8: Predictions of GPR (blue circles), barycentric (red
circles), NN (magenta circles), and IDW (green circles) as
a function of distance along a 1D arc (AB) between two
VFZOs (A and B). The true, underlying BRK function is
also shown (black line). 50 000 random input VFZOs were
generated and used for each of the models. 150 equally
spaced points between A and B obtained via oSLERP [52]
were used as prediction points. GPR uncertainty standard
deviation is plotted as shaded error band.

For example, the RMSE for the relevant constant
function compared to the validation function em-
ployed for the ANN interpolation method in [49] is
0.0854 J m−2; in contrast, the RMSE for the rele-
vant constant function compared to the BRK val-
idation function used in this work is 0.1302 J m−2

(see Table 2). This suggests that the BRK vali-
dation function is more complex and therefore less
well approximated by a constant than the valida-
tion function used to test the ANN interpolation
method in [49]. Consequently, the improved per-
formance of the present methods (see Section 3.4.1
and Tables 6 and 7) is even more notable in that the
validation function employed here is more difficult
to interpolate.

3.1.3. Experimental and Simulation Error

To give further context to the results of this and
prior works, it is useful to consider what the in-
trinsic error is for typical GB property data. This

provides an idea of the minimum possible interpo-
lation error, since one cannot reliably detect lower
error in the interpolation than already exists in the
observed data itself.

One such estimate for error is furnished by the
work of Shen et al. [74], who introduced a non-
discretizing approach to extract relative GB ener-
gies from polycrystalline samples using the locally
optimal block preconditioned conjugate gradient
method. Their approach utilizes regularization im-
posed on triple junction equilibrium equations and
k-nearest neighbor distances. Using 60 000 triple
junctions (180 000 GBs) and a custom, non-smooth
validation function they obtained GBE RMSE val-
ues of 0.0076 J m−2 and 0.0277 J m−2 for GBE val-
ues greater than 0.9 J m−2 and less than 0.9 J m−2,
respectively. This suggests that an optimistic esti-
mate for the error in noise-free17 experimental GBE
data obtained using such a method is on the order
of 0.0076 J m−2 to 0.0277 J m−2, which also serves
as an estimate of the minimum achievable noise-free
experimental interpolation error for any of the in-
terpolation methods described here. Similar anal-
ysis for noisy 0 K MS simulation data is provided
in Section 3.4 and Section S5.2 giving a RMSE and
MAE of 0.065 29 J m−2 and 0.061 90 J m−2, respec-
tively.

Again comparing the relevant constant-valued
control model18 to the validation function employed
by Shen et al. [74], we calculate a RMSE and
MAE of 0.0976 J m−2 and 0.0466 J m−2, respec-
tively. This implies that the validation model used
by Shen et al. [74] is also simpler19 than the BRK
validation model employed in the present work.

17These errors are based on Figure 8 from Shen et al. [74],
which employed synthetic triple junctions with a custom val-
idation function, rather than experimental data. While the
authors did also consider the addition of noise, we use the
noise-free results as an estimate of the best-case scenario.

18We use the mean of the true GBEs from their validation
function to define the constant-valued control model instead
of the mean of the input GBEs because the latter does not
exist for polycrystalline data.

19Shen et al. [74] used 8 cusps of varying depths and
widths based on the Read-Shockley model and unity GBE
everywhere else.
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3.2. Interpolation Efficiency

Below, we present interpolation efficiency results
in terms of computational runtime and memory for
the four interpolation schemes used in this work
(Section 3.2.1). Additionally, an in-depth treat-
ment of the improved symmetrization runtime (sep-
arate from interpolation runtime) relative to the
original octonion metric is given (Section 3.2.2).

3.2.1. Efficiency of Four Interpolation Methods

We discuss runtime and memory requirements
for barycentric, GPR, IDW, and NN interpolation
methods. Computational runtimes of the various
methods are shown in Table 5.

Barycentric interpolation takes the longest, in
spite of the fact that it is the only parallelized
method by default (not accounted for in Table 5).
In other words, since 12 cores were used to ob-
tain these runtime results, the total runtime across
all cores is much higher compared with the other
methods; however, it is possible that other methods
used multi-threading via built-in vectorized func-
tions. The long computation times of barycentric
interpolation result primarily from the large num-
ber of facets present in a high-dimensional mesh
triangulation and the interconnectedness of facets
with respect to each other.

GPR is fast compared to barycentric interpola-
tion; however, the entire process has to be reeval-
uated (in the current implementation) if the in-
put points (i.e. VFZOs) or input property values
(i.e. GBEs) change (typically referred to as pre-
dictors/features and responses, respectively, in the
machine learning community). On the other hand,
barycentric interpolation is fast if the triangulation
and intersections are pre-computed and only input
property values change (interp_bary_fast.m),
but slow if the input or prediction points change,
which requires recomputing the triangulation and
intersections. Additionally, GPR is the second-
longest in terms of of runtime.

NN and IDW interpolation have vectorized im-
plementations and are much simpler than the
barycentric and GPR methods. Consistent with
expectations, NN and IDW exhibit almost negligi-
ble runtimes. It should also be noted that barycen-
tric interpolation has much higher memory require-

ments than GPR, NN, and IDW due to the need to
store large matrices. If PredictMethod = 'exact'
in fitrgp(), then GPR also has high memory re-
quirements for large VFZO sets. For 50 000 input
points with sufficient RAM (e.g. ∼32 GB) and
12 cores available, the 'exact' method runtime
is (535.1± 392.6) seconds. However, because the
'fic' approximation is always used in this work,
memory requirements are similar to NN and IDW.

Because the default implementation of IDW uses
a radius cut-off, the distance and weight matrices
can be stored as sparse objects, dramatically re-
ducing both the final memory storage requirements
and computational complexity of this method. We
expect that a k-nearest neighbor approach would
produce similar results both in terms of runtime
and error when a relatively uniform sampling of
GBC is obtained.

3.2.2. Symmetrization Runtime Comparison with
Traditional Octonion Metric

In addition to the interpolation runtime of the
methods just presented, it is valuable to consider
the runtime of the VFZ symmetrization step (not
included in Table 5). The symmetrization step is
at the core of the VFZO framework and is a key
to its overall performance. It is a common step
for both (i) distance calculations and (ii) all of the
interpolation methods presented here.

Directly computed, scaled Euclidean and arc
length distances in the VFZO framework approx-
imate the original octonion distance by Francis
et al. [52], and the calculation speed is even higher
than explicit GBO distance calculations using the
original octonion distance. For example, 50 000
GBOs can by symmetrized into VFZOs in approxi-
mately 76 seconds using 6 cores (get_octpairs.m),
and the corresponding 50 000 × 50 000 pairwise-
distance matrix can be computed in approximately
10 seconds (pdist()), giving a total runtime of ap-
proximately 86 seconds (466 total CPU seconds).
Compared to the original octonion metric distance
calculations [53] in the Fortran-based EMSoft pack-
age [75], this represents an improvement in compu-
tational speed by ∼5 orders of magnitude using our
MATLAB implementation in the VFZO repository
[59].
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Table 5: Comparison of average runtime (s) for 10 trials for barycentric, GPR, IDW, and NN interpolation methods for
various input VFZO set sizes using 12 cores and evaluated on 10 000 prediction VFZOs. Because GPR, IDW, and NN
method defaults do not use parfor loops but may have internal multi-core vectorization, it is unclear to what extent the
number of cores affects the runtime of methods other than barycentric interpolation. VFZO symmetrization runtime was
not included; however, symmetrization of 50 000 GBOs takes approximately 76 seconds on 6 cores (Intel i7-10750H, 2.6
GHz) and is a common step in every interpolation method (i.e. it is fundamental to the VFZO framework). We used the
BRK validation function for GBE [70].

Runtime (s)
VFZO Set Size Barycentric GPR IDW NN
100 191.8± 19.57 0.4187± 0.4342 0.034± 0 0.0367± 0.0041
388 388.4± 18.84 0.943± 0.3481 0.0904± 0.0224 0.0705± 0.0129
500 455.7± 55.28 0.6104± 0.3138 0.1352± 0.0364 0.0724± 0.0051
1000 536.5± 35.26 1.743± 0.9464 0.1948± 0.0395 0.1203± 0.0184
5000 998.9± 54.48 5.216± 0.4816 0.8726± 0.1529 0.9277± 0.2418
10 000 1516± 56.59 5.609± 0.8756 1.631± 0.3915 0.8938± 0.1717
20 000 2526± 119.5 11.45± 3.29 3.191± 0.4752 1.275± 0.3423
50 000 5743± 361.3 13.69± 4.05 7.635± 1.872 3.817± 0.5884

Improvement per distance calculation per core
of the VFZO repository is about 4× 105 relative
to the EMSoft [75] metric of 26 minutes using 8
cores for a 388×388 pairwise distance matrix. This
EMSoft timing information is directly reported in
Chesser et al. [53]. In other words, computation of
a 50 000×50 000 using the traditional octonion met-
ric and EMSoft implementation would take approx-
imately 6.6 CPU years (or 153 CPU days by apply-
ing the isometry equation in Section 7 of Moraw-
iec [54]). Since most interpolation methods will
depend on computing new distances, probing the
model at new GBs will also be expensive. For ex-
ample, it would take at minimum ∼30 CPU days
(after isometry equivalence has been applied) to
perform property interpolation for 10 000 predic-
tion GBs assuming the pairwise-distance matrix
relative to 50 000 input GBOs needs to be com-
puted. This presents an issue for iterative sim-
ulations (e.g. mesoscale grain growth) in which
1000’s of new GB segments would need to be sam-
pled at each time step. By contrast, property
values for 10 000 new GBs would be sampled in
our approach in ∼90 CPU seconds. For perspec-
tive, a phase-field simulation might have 10 000 or
more time steps with thousands of GBs Kim et al.
[68], Dimokrati et al. [76]. Recently, Miyoshi et al.
[77] presented Reed-Shockley anisotropic 3D phase-
field grain growth results for initially 3 125 000

grains with as many as 125 000 time steps to reach
∼10 000 final grains. Performing such a simulation
with even the efficient VFZO framework would re-
quire 56 CPU years for the property sampling alone
20.

This significant speed up stems from the fact that
in the VFZO framework SEOs only need to be con-
sidered once per GB, O(L), rather than once per
distance calculation, O(L2), and that SEOs only
need to be considered once in a GB pair, O(N2

p ),
rather than for every combination between the two
GBs, O(N4

p ). The SEO computation complexity is
thus O(N2

pL), a significant improvement compared
with the original SEO complexity of O(N4

pL
2) [53],

where Np is the number of proper rotations of the
crystallographic point group (Np = 24 for m3̄m
face-centered cubic point group) and L is the num-
ber of GBs.

Empirically, to compute a pairwise-distance ma-
trix for L = 50 000 GBs using the VFZO repos-
itory [59], the full O(N2

pL) symmetrization opera-
tions take about 76 seconds× 6 cores = 456 seconds
of CPU time, whereas the subsequent pairwise-

20For such an application, a GPU implementation of the
VFZO framework, batch implementation of the SEO con-
siderations, directly tracking GBs movement within a VFZ,
and/or other approaches would likely be necessary to make
the problem more tractable.
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distance computation is Opd(L2) and takes approx-
imately 10 seconds for a 50 000 × 50 000 matrix.
Even though O(N2

pL)� Opd(L2), the symmetriza-
tion step takes far more time than the pairwise
distance calculation (even for large L) because of
the cost of generating SEOs. Because Euclidean
distances—which can be computed faster than
trigonometric inverse functions—are employed, and
built-in, vectorized MATLAB functions are uti-
lized, there is a further speed enhancement in the
VFZO approach.

3.3. Interpolation Visualization

We present interpolation results plotted in a 1D
arc in the full 5DOF GB space (Section 3.3.1)
followed by discussion of potential to use numer-
ical derivatives and identify local minima (Sec-
tion 3.3.2).

3.3.1. Interpolation Along a 1D Arc

To provide a visual illustration of the property
predictions, Figure 8 shows the predicted GBE for
each of the four interpolation methods as a func-
tion of distance along a 1D arc (AB) between two
VFZOs, A and B. Approximate coordinates for A
and B are given in Table 4, and each intermediate
point between A and B resides on the surface of
a hypersphere. The 150 intermediate points were
obtained using oSLERP [52]. Each model used its
own set of 50 000 random input VFZOs with GBE
sampled via the BRK validation function. The two
VFZOs were chosen by taking the furthest apart
pair out of 20 000 VFZOs which thus approximates
the largest dimension of the VFZ where each end-
point is close to the true VFZ exterior.

Comparison of the predictions from the four in-
terpolation methods with the true values of the
BRK validation function along this 1D path shows
that all methods yield reasonable agreement with
the true model. The GPR and barycentric meth-
ods appear to agree most with the true model, fol-
lowed by IDW and NN. The NN method shows
the piecewise-constant (stair-step) artifact typical
of NN methods. We also note that while the fidelity
of the predictions is quite good for all methods in
the interior of the VFZ, the performance does de-
grade at the extreme limits of the VFZ (note the

deviations at the left and right limits of Figure 8).
This effect seems to be particularly pronounced for
the barycentric method, and much less so for the
GPR method.

We believe this is the first21 plot of a GB prop-
erty continuously interpolated between two arbi-
trary GBs (i.e. neither residing entirely in a sin-
gle misorientation fundamental zone nor a single
boundary plane fundamental zone). Such visual-
izations can naturally be extended to 2D and 3D
by plotting colored points in a triangle or tetrahe-
dron, respectively, all of which (1D, 2D, and 3D)
represent small “slices” of the GBC space.

3.3.2. Potential for Numerical Derivatives

Additionally, such visualizations suggest the abil-
ity to estimate numerical derivatives or gradients
of GB properties without being restricted to a GB
subspace (e.g. misorientation fundamental zone or
boundary plane fundamental zone) which can be a
useful mathematical construct for the GB commu-
nity. For example, steepest descent paths and all
local GBE minima can be estimated and used in
grain growth simulations. In such contexts, use of
ensembled VFZO interpolation may be necessary
to mitigate discontinuity artifacts when crossing
the exterior of a VFZ as discussed in Section 2.1.3
which we plan to explore in future work.

3.4. Literature Datasets

In addition to validation results (Section 3.1), we
also apply the VFZO framework to real GB prop-
erty data from two sources in the literature. This
allows more direct comparison to previous meth-
ods as well as demonstration of the performance
of the the VFZO framework for typical MS data.
Specifically, we present GPR interpolation results
for MS Fe and Ni simulation datasets and compare
them with prior work (Section 3.4.1). Finally, be-

21OSLERP results from Francis et al. [52] plots GB struc-
ture continuously between two GBs, Chesser et al. [53] per-
forms cross-validation on the simulated Olmsted Ni GBs,
and [54] plots distances between GBs on a geodesic with an-
other GB. The results in these works are distinct from what
is presented here: a plot of continuously interpolated GBEs
between two arbitrary GBs.
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cause GPR overestimates the low GBE for the non-
uniformly distributed, noisy Fe simulation dataset,
we also provide results for an adaptation called the
GPRM model that compensates for this effect (Sec-
tion 3.4.2).

3.4.1. Comparison with Prior Work

The GPR interpolation method of the present
work was used with the same number of input
GBs as was supplied in Restrepo et al. [49] for
Fe (17 176) and Chesser et al. [53] for Ni (388) to
provide a more consistent comparison with prior
work. For Fe, the remainder of the simulation data
was used for testing, consistent with Restrepo et al.
[49], except that zero-energy GBs and degenerate
GBs were treated differently as described in Sec-
tion 2.4.1. For Ni, a leave-one-out cross validation
scheme was used, consistent with Chesser et al. [53].

Hexagonally binned parity plots for the Fe and
Ni simulation datasets are shown in Figure S8d and
Figure S12, respectively. RMSE and MAE com-
parisons along with improvement relative to a con-
stant, average model are given in Table 6 and Ta-
ble 7, respectively.

For the Fe case, we see a larger improvement than
prior work likely due to our incorporation of GB
symmetry, which was not considered in Restrepo
et al. [49]. For the Ni case, there is a slight im-
provement relative to prior work, indicating that
accuracy is similar to the original octonion met-
ric while maintaining the significant computational
benefits of the VFZO framework.

Since the BRK validation function is also an
interpolation function on the Ni simulation data,
GPR within the VFZO framework and the BRK
function results are directly compared via parity
plot in Figure 9.

For the BRK and GPR interpolations, MAE
is 0.009 75 J m−2 and 0.036 26 J m−2, respec-
tively. Likewise, RMSE is 0.017 27 J m−2 and
0.049 72 J m−2, respectively. From Figure 9a, we
see that low GBE is predicted more accurately and
high GBE less accurately with BRK interpolation
vs. GPR in the VFZO framework. Without access
to the original fitting routines used to produce the
BRK function, we have not performed leave-one-
out cross validation which would allow for a safer

model evaluation (i.e. one in which fair results are
less likely due to overfitting). Leave-one-out cross
validation results for the GPR case are, however,
shown in Figure S12, indicating that the model per-
forms much worse in such a data-limited regime at
points the model has never seen before.

3.4.2. Gaussian Process Regression Mixture Ap-
plied to Metastable Fe Simulation Data

In addition to GPR, a GPRM model (Figure S8)
based on a sigmoid mixing function (Figure S9)
is used to better predict low GBE values of the
non-uniformly distributed, noisy Fe dataset (Sec-
tion 2.4.3)22. GPRM interpolation results for the
Fe GBE simulations [68] are shown in Figure 10,
where approximate coordinates for the octonions
A and B in Figure 10b are given in Table 8.

We find that:

• the model error is on par with the intrinsic
error of the data

• the predictions likely exhibit overprediction
bias relative to the true minimum for a given
GB

• future availability of multiple metastable state
GBEs is anticipated to greatly improve the
model performance

We now elaborate each of these points.

First, because only a single metastable state was
used for each GBE simulation, both the training
and validation data are subject to noise, consis-
tent with a wide lateral spread of predictions in
both Figure 10 and the intrinsic error estimation
(Figure S11). The Fe simulation dataset GPRM
model gives lower RMSE (0.055 035 J m−2) and
MAE (0.039 185 J m−2) than the intrinsic error es-
timates. This indicates that the intrinsic error it-

22Alternatively, including no-boundary octonions may
likewise improve low GBE performance, but possibly at the
expense of high GBE predictive accuracy.
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Table 6: Comparison of interpolation MAE (1 trial run) for 0 K molecular statics (MS) datasets. A constant model (Cst,
Avg MAE), whose value was chosen to be the mean of the input GBE was used as a control. The last two columns,
MAE ↓ (J m−2) and MAE ↓ (%)), represent the reduction in MAE in units of J m−2 and % relative to the control model,
respectively. Non-sym refers to distances calculated in Restrepo et al. [49] without regard for crystal symmetries.

Method Distance Dataset # GBs
MAE

(J m−2)
Cst, Avg MAE

(J m−2)
MAE ↓
(J m−2)

MAE ↓
(%)

GPR VFZ MS Fe 17 176 0.0405 0.0617 0.0212 34.4
ANN [49] Non-sym MS Fe 17 176 0.0486 0.0617 0.0131 21.2
Laplacian kernel regression [53] GBO MS Ni 388 — 0.1752 — —

Table 7: Comparison of interpolation RMSE (1 trial run) for 0 K molecular statics (MS) datasets. A constant model (Cst,
Avg RMSE), whose value was chosen to be the mean of the input GBE was used as a control. The last two columns,
RMSE ↓ (J m−2) and RMSE ↓ (%)), represent the reduction in RMSE in units of J m−2 and % relative to the control
model, respectively. Non-sym refers to distances calculated in Restrepo et al. [49] without regard for crystal symmetries.

Method Distance Dataset # GBs
RMSE
(J m−2)

Cst, Avg RMSE
(J m−2)

RMSE ↓
(J m−2)

RMSE ↓
(%)

ANN [49] Non-sym MS Fe 17 176 — 0.0854 — —
GPR VFZ MS Ni 388 0.0951 0.2243 0.1292 57.6
Laplacian kernel regression [53] GBO MS Ni 388 0.0977 0.2243 0.1266 56.4

Figure 9: Hexagonally binned parity plots of (a) BRK and (b) GPR model GBEs fitted using Olmsted Ni simulation
data vs. Olmsted Ni simulation GBEs. MAE is 0.009 75 J m−2 and 0.036 26 J m−2 for (a) and (b), respectively. Likewise,
RMSE is 0.017 27 J m−2 and 0.049 72 J m−2, respectively.

Table 8: Approximate coordinates of VFZOs A and B used for the MS Fe simulation dataset interpolation in Figure 10.
Individual quaternions of each octonion are given in the laboratory reference frame with an assumed GB normal pointing
in the +z direction, also in the laboratory reference frame.

Octonion o(1) o(2) o(3) o(4) o(5) o(6) o(7) o(8)
A 0.8716 -0.4124 -0.1857 0.1893 0.3146 0.8359 -0.3815 0.2382
B 0.4391 -0.7856 -0.4142 -0.1360 -0.1376 0.8082 -0.3705 0.4366
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Figure 10: Interpolation results for a large Fe simulation database [68] using 46 883 input GBs and 11 721 prediction GBs
in an 80%/20% split and a GPRM model to better approximate low GBEs. Use of a GPRM model predicts low GBE
better than the standard GPR model (compare with Figure S8d). (a) Hexagonally binned parity plot of the GPR mixing
model with RMSE and MAE of 0.055 035 J m−2 and 0.039 185 J m−2, respectively, relative to typical, constant average
models of 0.0854 J m−2 and 0.0617 J m−2, respectively. (b) Predictions of GPRM model (blue circles) as a function of
distance along a 1D arc (AB) between two VFZOs (A and B).

self is somewhat overestimated23. The fact that
both model and intrinsic error metrics are relatively
close and the prediction and intrinsic error parity
plots (Figure 10 and Figure S11b, respectively) are
similar suggests that the model is performing well.
It also suggests that further improvements in the
model relative to the “true” values will be “hid-
den”, i.e. they will probably not manifest as lower
RMSE or MAE nor as more tightly distributed par-
ity plots, etc.

Next, given the theoretical existence of a true
minimum GBE for a given GB, the predictions
which were based on metastable GBEs can be as-
sumed to have an overprediction bias relative to the
true minimum. On average, we expect this over-
prediction bias relative to the true minimum GBE
(rather than the most likely metastable state) may
be on the order of a few hundred mJ m−2 and may

23The prediction error of a model typically cannot be less
than the noise of the prediction data of a model even if the
model is estimating the true prediction values with better
accuracy than the noise (which is very possible and even
expected with GPR models when the noise in the input data
is approximately Gaussian).

vary as a function of true minimum GBE. In other
words, the model obtained is probably an estimate
of the most likely metastable GBE rather than the
true minimum GBE. This is akin to saying that we
obtain from this data a model that approximates
the non-equilibrium, Stillinger quenched red curve
of Figure 4(c1) in [27], not the minimum GBE blue
curve of the same chart. See [27] for an in-depth
treatment of equilibrium and metastable GBE.

Finally, datasets where multiple metastable
GBEs (e.g. 3-10 repeats) are provided for each
GB will likely greatly improve the performance of
the GPR model in predicting either the most likely
metastable GBE (when all GBEs are considered)
or the true minimum GBE (when only the min-
imum GBE is considered for each GB) and may
even negate the need for a GPRM approach. Thus,
it is suggested that, where feasible, future large-
scale GB bicrystal simulation studies will report all
property data for repeated trial runs rather than a
single trial run or a single value from a set of trial
runs. Ideally, data for the three additional micro-
scopic DOFs for GBs (which falls into the category
of epistemic uncertainty in this work) would also
be included. We believe it is likely that minimum
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energy paths (i.e. paths of steepest descent) in the
GBE landscape depend on both macroscopic and
microscopic DOFs (in total, 8DOF) and could of-
fer a more holistic view of GB behavior that bet-
ter mimics and explains experimental grain growth
observations. Indeed, it has been experimentally
observed that at least some GB migration mech-
anisms involve structural transformations between
equilibrium GBs via metastable states [28].

4. Conclusion

In this work, we presented the VFZO framework
for (i) computing distances between GBs and (ii)
predicting the properties of GBs from existing mea-
surements. We found that distance calculations in
the VFZO framework are dramatically more com-
putationally efficient than traditional methods at
the expense of infrequent, large distance overesti-
mation which can be addressed through ensemble
techniques at a small computational cost as dis-
cussed in Section 2.1.3.

We also developed and tested a barycentric in-
terpolation method, and adapted three other in-
terpolation methods for use in the VFZO frame-
work. We provide an easy-to-use, versatile imple-
mentation of our methods through an interpola-
tion function interp5DOF.m written in MATLAB
(github.com/sgbaird-5dof/interp, [59]) and
many companion functions in the VFZO repository.
This approach is general and can be applied to any
crystal system (any of the 32 crystallographic point
groups can be selected by the parameter pgnum24).
The methods described here may be applicable to

24While our testing focused on cubic point group symme-
try, symmetry operators for other point group symmetries
were provided in the TutorialCode/crystal symmetry ops
directory of github.com/ichesser/GB octonion code (as
of commit: f57f9be). Other point groups (in particular those
which are noncentrosymmetric) may give rise to differently
shaped/larger VFZs for which a Euclidean distance approx-
imation will have the worst case error of 2 vs. the true value
of π which represent the furthest Euclidean and arc length
distances on a unit hypersphere, respectively. The distance
type of GBdist4.m can be changed from 'norm' to 'omega'
to address this issue. We plan to investigate symmetries
other than cubic in future work.

other distance metrics (see Morawiec [54] for a com-
prehensive summary of metrics). We also devel-
oped a GPRM model specifically for better low
GBE prediction using a non-uniformly distributed,
noisy dataset.

Of the interpolation methods that we present in
this work, GPR provided the highest accuracy pre-
dictions. It also provided higher accuracy predic-
tions than any of the methods in the literature.
The GPR interpolation errors (50 000 VFZOs) for
the BRK validation model are about 2.4 times the
intrinsic error that would be expected from re-
construction of noise-free, experimental polycrys-
talline data via locally optimal block precondi-
tioned conjugate gradient [74] (180 000 GBs) with
their simpler validation model. Moreover, the in-
terpolation errors for a Fe simulation dataset are
on par with the intrinsic errors of the dataset it-
self (Section S5.2). While IDW and NN interpo-
lation have the fastest computation times, they
also have higher interpolation error. Consequently,
we recommend the GPR interpolation method for
the VFZO framework for most applications be-
cause it provides the best combination of accuracy
and speed and handles input noise; however, the
other methods can meet niche needs. For example,
barycentric interpolation enables rapid and accu-
rate predictions when the function to be evaluated
changes, but the input and prediction GBs remain
fixed.

We anticipate that the VFZO framework and
corresponding implementation will benefit numer-
ous applications related to GB structure and prop-
erties, including facilitating GB structure-property
model development, enabling efficient surrogate
modeling of GB properties, and larger scale iter-
ative simulations that require repetitive evaluation
of computationally expensive structure-property
models.
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Appendix A Active vs. Passive Conven-
tion

Misorientation quaternions are represented in the
active sense25:

qm = qA
−1qB (4)

where qm, qA, and qB represent the misorientation
quaternion, orientation quaternion of grain A in the
sample frame, and orientation quaternion of grain
B in the sample frame, respectively. The −1 op-
erator denotes a unit quaternion inverse (identical
to conjugation of a unit quaternion). Quaternion
multiplication is given by equation 23 of [78]

pq ≡ (p0q0 − p · q, q0p + p0q + Pp× q) (5)

where q0 and p0 are scalar components of the
quaternions, and q and p are the vector compo-
nents.

In this work, we use the convention that P = 1
throughout the various operations in the VFZO
repository (P ≡ epsijk) and highly encourage in-
terested readers to refer to Rowenhorst et al. [78]
to understand the redefined versions of quaternion
multiplication, quaternion rotation, nuances asso-
ciated with use of active vs. passive conventions,

25The passive convention is used in [52]

etc. Boundary plane unit normals are expressed
pointing away from grain A and in the reference
frame of grain A (i.e. the outward-pointing normal
convention).

Appendix B Detailed Barycentric Interpo-
lation Method

We describe barycentric interpolation applied in
the VFZO framework in more detail. This includes:

1. triangulation of a VFZ mesh (Appendix B.1)

2. finding intersections between arbitrary VFZOs
and the VFZ mesh (i.e. finding intersecting
facets) (Appendix B.2)

3. calculating interpolated values of an arbitrary
VFZO property using the intersecting facet
(Appendix B.3)

B.1 Triangulating a Voronoi Fundamental Zone
Mesh

Creation of a simplicial mesh is necessary to per-
form barycentric interpolation. Due to the diffi-
culty of visualizing a 7-sphere, we provide visual
illustrations of the process as applied to lower-
dimensional analogues. After GBOs have been
symmetrized into a VFZ (Section 2.1.1), the tri-
angulation process occurs by:

1.1 applying a SVD transformation to remove
the U(1)-symmetry degeneracy inherent in the
VFZO coordinates (Appendix B.1.1)

1.2 linearly projecting VFZOs onto a hyperplane
that is tangent to the vector between the origin
and the mean of the input VFZOs to reduce
computational burden of the triangulation

1.3 performing a second SVD transformation (Ap-
pendix B.1.3)

1.4 computing the triangulation according to the
quickhull algorithm [55] using built-in methods

In the explanation of each of these steps that
follows, we make reference to lower-dimensional vi-
sual analogues of the VFZO triangulation proce-
dure, which are given in Figure B.1, Figure B.2,
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and Figure B.3. We note that 3D Cartesian coor-
dinates in Figure B.1 correspond to 8D Cartesian
coordinates, whereas 3D Cartesian coordinates in
Figure B.2 and Figure B.3 correspond to 7D Carte-
sian coordinates. This is intentional for two rea-
sons:

• Figure B.1 illustrates that unsymmetrized 8D
Cartesian GBOs are analogous to a point cloud
on the 2-sphere (Figure B.1a) and that an 8D
Cartesian VFZO set, which has already been
symmetrized, is analogous to a geodesic arc
on the 2-sphere (Figure B.1b). A VFZO set
has a degenerate dimension that can then be
removed by a rigid SVD transformation to 7D
Cartesian coordinates (analogous to 2D Carte-
sian coordinates in Figure B.1c). This se-
quence would be more difficult to visualize if
Figure B.1a was meant to represent a point
cloud on the 3-sphere (4D Cartesian coordi-
nates), etc.

• Figure B.2 illustrates a second transforma-
tion from normalized 7D Cartesian coordinates
(Figure B.2a) to a hyperplane (Figure B.2b)
which is then transformed into 6D Cartesian
coordinates via a second SVD. In this case,
key issues are retained that would otherwise
be lost (Section S4.1) if an arc on a circle (1-
sphere) to 1D Cartesian coordinates were used
instead26. Additionally, the use of actual tri-
angles is a more familiar and compelling illus-
tration of triangulation.

While lower dimensional analogues are useful for
visualizing and understanding the process of trian-
gulation, a written description is also given in the
following sections. As appropriate, we refer back to
the teaching figures described in this section.

26Non-intersection issues due to high-aspect ratios and
consideration of facets connected up to nnMax NNs do not
manifest in triangulations on the surface of a 1-sphere be-
cause one of the two facets (i.e. line segments) connected to
the first NN mesh vertex relative to the prediction point is
guaranteed to have an intersection.

B.1.1 Singular Value Decomposition Transforma-
tion from 8D Cartesian to 7D Cartesian

To reduce the computational complexity of tri-
angulating a high-dimensional mesh [55], some sim-
plifications are made. First, the degenerate oc-
tonion dimension obtained from analytically mini-
mizing U(1) symmetry [52] is removed via a rigid
(i.e. distance- and angle-preserving) SVD trans-
formation, analogous to a Cartesian rotation and
translation (see 3D to 2D SVD transformation from
Figure B.1b to Figure B.1c).

B.1.2 Linearly Project onto Hyperplane

Next, the resulting 7D Cartesian representation
of each VFZO is projected onto a hyperplane that
is tangent to the centroid (i.e. mean) of the VFZO
set27 (Figure B.2a). By performing this linear pro-
jection, one of the dimensions becomes degenerate.

B.1.3 Singular Value Decomposition Transforma-
tion from 7D Cartesian to 6D Cartesian

This additional degeneracy is removed via a sec-
ond SVD transformation, this time to 6D Carte-
sian coordinates (see 3D to 2D projection in Fig-
ure B.2a-b). Finally, the resulting points can be
triangulated via the quickhull algorithm [55] (see
VFZO repository function sphconvhulln.m and
built-in MATLAB function delaunayn()), which
relies on Euclidean distances28. Because the sim-
plicial mesh is defined by a list of edges between
vertices for each simplicial facet, this list applies
immediately to the VFZO set in its 7D Cartesian
coordinates (i.e. no reverse transformation is nec-
essary to use the mesh on the 6-sphere in 7D).

27This is not a rigid transformation; however, it approxi-
mates one with sufficient accuracy to produce a high-quality
triangulation in a VFZ.

28While the triangulation algorithm used in this work re-
lies on Euclidean distances (the use of which is possible via
the VFZO framework), other distance metrics that are non-
Euclidean [54] could potentially be incorporated into the
barycentric approach such as by doing an edge-length based
simplex reconstruction [79, 80] using the VFZ triangulation
edge lengths.
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Figure B.1: 3D Cartesian to 2D Cartesian analogue of 8D Cartesian to 7D Cartesian degeneracy removal via rigid SVD
transformation as used in barycentric interpolation approach. (a) Starting spherical arc points on surface of 2-sphere,
(b) rotational symmetrization applied w.r.t. z-axis (analogous to U(1) symmetrization), and (c) degenerate dimension
removed via singular value decomposition transformation to 2D Cartesian with either the origin (black plus) preserved
(black asterisks, zeroQ=T) for triangulation or ignored (red asterisks, zeroQ=F) for mesh intersection. The spheres (a,b)
and circle (c) each have a radius of 0.8 and are used as a visualization aid only.

Figure B.2: 3D Cartesian to 2D Cartesian analogue of 7D Cartesian to 6D Cartesian mesh triangulation used in barycentric
interpolation approach. (a) 3D Cartesian input points are (b) linearly projected onto hyperplane that is tangent to mean
of starting points. (c) The degenerate dimension is removed via a rigid SVD transformation to 2D Cartesian and the
Delaunay triangulation (black lines) is calculated, with input vertices (red). Delaunay triangulation superimposed onto
normalized input points (d). The spheres in (a), (b), and (d) have a radius of 0.8 and are used for visualization only.
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B.2 Intersections in a Voronoi Fundamental Zone
Mesh

Once the triangulation has been determined, we
need to find which facet each prediction point in-
tersects (i.e. find the intersecting facet). There are
two sub-steps:

2.1 applying the same rigid transformation to the
prediction points as was applied to the in-
put points (otherwise the prediction points
won’t line up properly with the mesh) (Ap-
pendix B.2.1)

2.2 identifying facets nearby a prediction point
and testing for intersection (Appendix B.2.2).

B.2.1 Apply Same Singular Value Decomposition
to Input and Prediction Points

The positions of the prediction points need to be
fixed relative to the mesh even after the rigid SVD
transformation. This is accomplished by:

2.1a concatenating both input and prediction
points

2.1b using the interp5DOF.m sub-routine
proj_down.m (which depends on MAT-
LAB’s built-in SVD implementation svd())
to perform the transformation

2.1c subsequently separating the transformed input
and prediction points (reverse of concatenation
step)

To map new points onto the mesh, the usv struc-
ture output from proj_down.m needs to be stored
and supplied in future calls to proj_down.m. Like-
wise, usv need to be supplied to proj_up.m to per-
form the reverse SVD transformation.

B.2.2 Testing Nearby Facets for Intersections

Once the prediction points are lined up properly
with the mesh, the facet containing the prediction
point (i.e. intersecting facet) is found. We define
the intersecting facet as the one for which a point’s
barycentric coordinates are positive within a given
tolerance. Consequently, we determine facet affili-
ation by:

Figure B.3: A ray (red line) is linearly projected from the
2-sphere onto the hyperplane of a mesh facet (transparent
black), shown as a red asterisk. The barycentric coordinates
are computed as λi∈[1,3] = 1

3 . Because all barycentric coordi-
nates are positive, it is determined that the projected point
is an intersection with the mesh. Given vertex values of
8.183, 3.446, and 3.188 for vertices 1, 2, and 3, respectively,
the interpolated value is calculated as 4.94 via Eq. (6).

2.2a linearly projecting the prediction point onto
the hyperplane defined by a mesh facet’s ver-
tices (Figure B.3)

2.2b computing the point’s barycentric coordinates
within the facet [81, 82] (see VFZO repository
function projray2hypersphere.m)

2.2c testing that all coordinates are positive [63]
within a tolerance29

2.2d repeating steps 2.2a-2.2c until an intersection
is found or a stop condition is reached (see
nnMax below).

For further information on barycentric coordi-
nates and its applications and generalizations, see
[63–65, 82–95].

Due to the large number of facets per point
of a high-dimensional triangulation (approximately
2000 facets per vertex for a 50 000 point VFZ tri-
angulation, or 1× 108 total facets), some simpli-
fications are made in order to determine intersec-
tions of prediction points with the mesh. If ev-
ery edge length of every facet were equal, only
facets connected to the first NN would need to

29Two tolerances are used: one for the initial compu-
tation of barycentric coordinates by projecting onto the
hypersphere to determine facet affiliation (projtol=1e-4)
and a larger tolerance (inttol=1e-2) for computation of
barycentric coordinates to determine interpolated values
(Appendix B.3).
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be considered to find a proper intersection. How-
ever, since the VFZOs are randomly sampled, edge
lengths of facets are non-uniform, and non-unity
aspect-ratio facets exist (Figure B.2, Figure S7).
If the facets have high-aspect ratios, the intersect-
ing facets of prediction points can be far from the
NNs mesh points relative to the prediction points
(see Figure S7 inset), especially near the perime-
ter of a hyperspherical surface mesh. Rather than
loop through every facet to find an intersection
(∼1× 108 facets in a 50 000 VFZO mesh), the pre-
diction point intersections are calculated by con-
sidering facets connected to up to some number of
NN mesh vertices (nnMax) relative to each predic-
tion point (in this work, nnMax=10). The NN mesh
vertices relative to a prediction point are computed
via the MATLAB built-in function dsearchn as in
the NN approach (Section 2.3.4). The facet IDs
of facets connected to these NNs are computed by
calling built-in MATLAB function find(), as in
find(K==nn), where K is the triangulation from
VFZO repository function sphconvhulln.m and nn

is the ID of one of the NN mesh vertices.
Some prediction points will have no intersecting

facet found. From our numerical testing, we deter-
mine that this non-intersection phenomenon occurs
in two situations:

• high-aspect ratio facets (described above)

• prediction points that are positioned just out-
side the bounds of the mesh but within the
bounds of the VFZ, due to the fact that the
mesh is a piecewise linear approximation of a
surface with a curved perimeter and that ran-
domly sampled points typically do not fall on
the true perimeter

In the first case, barycentric interpolation within
high-aspect ratio facets may actually lead to worse
interpolation error than a NN interpolation strat-
egy due to influence by GBs far from the prediction
point. In the second case, there is no true intersec-
tion between the prediction point and the mesh.
Both issues can be addressed with the same strat-
egy: we apply a NN approach (Section 2.3.4) when
an intersecting facet is not found within nnMax

NNs. In numerical tests, VFZ meshes composed of

388 and 50 000 vertices produced non-intersection
rates of (12.07± 1.02) % and (0.68± 0.11) %, re-
spectively, over approximately 10 trials and using
10 000 prediction points for each trial.

Testing intersections for nearby facets
is handled in the VFZO repository func-
tion intersect_facet.m and depends on
the barycentric coordinate computations in
projray2hypersphere.m.

B.3 Interpolation via Barycentric Coordinates

Once a mesh triangulation has been determined
(Appendix B.1), barycentric coordinates are recom-
puted for a prediction point within the input mesh
(Appendix B.2) using a somewhat larger tolerance;
the interpolated value is found by taking the dot
product of the prediction point’s barycentric co-
ordinates and the properties of the corresponding
vertices of the intersecting facet via

vm,q =
N∑

i=1

λm,ivm,i (6)

where λm,i, vm,q, vm,i and N , are the barycentric co-
ordinates of the m-th prediction point, interpolated
property at the m-th prediction point, property of
the i-th vertex of the intersecting facet for the m-th
prediction point, and number of vertices in a given
facet (N = 7 for facets of the simplicial mesh on the
degeneracy-free 6-sphere), respectively. Interpola-
tion of many prediction points simultaneously can
be accomplished by a simple, vectorized approach
via MATLAB built-in function dot() as used in
VFZO repository function interp_bary_fast.m.
This function assumes triangulation and weights
have been precomputed. In other words, both in-
put and prediction coordinates remain fixed, and
only input property values change. If this is the
case, barycentric interpolation of new points is in-
credibly fast. By contrast, if input coordinates
change, the triangulation must be recomputed, and
if prediction coordinates change, the intersecting
facets must be recomputed. Both triangulation and
finding intersecting facets are computationally de-
manding with respect to memory and runtime (Sec-
tion 3.2).
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Glossary

5DOF five degree-of-freedom 1, 2, 8, 11, 18

ANN artificial neural network 2, 15, 20

BRK Bulatov Reed Kumar 11, 13–15, 17–20, 22

DOF degree of freedom 1, 21, 22

FZ fundamental zone 3, 5, 9

GB grain boundary 1–3, 5, 6, 8–11, 13–15, 17–22,
27

GBC grain boundary character 2, 16, 18

GBE grain boundary energy 1, 2, 7, 11–22

GBO grain boundary octonion 2–5, 8–11, 16, 17,
20, 23, 24

GPR Gaussian process regression 1, 3, 9–22

GPRM Gaussian process regression mixture 10,
11, 19, 21, 22

IDW inverse-distance weighting 1, 2, 9–18, 22

MAE mean absolute error 2, 7, 8, 11, 12, 14, 15,
19–21

MS molecular statics 1, 2, 11, 15, 18, 20

NN nearest neighbor 1, 5, 6, 9–18, 22, 24, 26, 27

oSLERP octonion Spherical Linear Interpolation
2, 15, 18

RMSE root mean square error 1, 2, 7, 8, 11–15,
19–21

SEO symmetrically equivalent octonion 3–5, 8, 17,
18

SVD singular value decomposition 3, 10, 23–26

VFZ Voronoi fundamental zone 3–14, 16–18, 20,
23, 24, 26, 27

VFZO Voronoi fundamental zone octonion 1–12,
14–24, 26, 27
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S0.1. Use of Interpolation Function

To facilitate easy application of the presented methods, a vectorized, parallelized, MATLAB im-
plementation, interp5DOF.m, is made available in the Voronoi fundamental zone octonion (VFZO)
repository [1] with similar input/output structure to that of built-in MATLAB interpolation func-
tions (e.g. scatteredInterpolant(), griddatan()). A typical function call is as follows:
ypred = interp5DOF(qm,nA,y,qm2,nA2,method). The argument y is a vector of known property val-
ues corresponding to the GBs defined by (qm,nA), which respectively denote pairs of GB misorientation
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Figure S1: Parity plot of 8D Cartesian hyperspherical arc length vs. 8D Cartesian Euclidean distance for pairwise
distances in a (m3̄m) symmetrized set of 10 000 randomly sampled VFZOs. The max arc length is approximately 0.58 rad,
indicating a max octonion distance of approximately 1.16 rad or 66.5° between any two points in the Voronoi fundamental
zone (VFZ). The close correlation between arc length and Euclidean distance supports the validity of using Euclidean
distance instead of arc length in the interpolation methods. This is separate from the correlation between VFZO Euclidean
or arc length distances with the traditional octonion distance [3].

quaternions and boundary plane normals. The result, ypred, is a vector of predicted/interpolated
property values corresponding to the prediction grain boundaries (GBs) defined by (qm2,nA2).

Internally, these are converted to octonions and interpolation is performed using the selected method.
For the validation function, these can be compared to the true grain boundary energys (GBEs) ytrue.
The methods used in this work are 'pbary', 'gpr', 'idw', and 'nn', corresponding to planar barycen-
tric, Gaussian process regression (GPR), inverse-distance weighting, and nearest neighbor (NN) interpo-
lation, respectively. A placeholder template with instructions for implementing additional interpolation
schemes is also provided in interp5DOF.m. See Francis et al. [2] and five2oct.m [1] treatments of
conversions to octonion coordinates in the passive and active senses, respectively (Appendix A).

S1. Euclidean and Arc Length Distances

The close correlation between Euclidean and arc length distances in the VFZO sense is shown in
Figure S1 using pairwise distances of 10 000 VFZOs. This justifies our use of Euclidean distance as
an approximation of hyperspherical arc length (and by extension, that a scaled Euclidean distance
approximates a non-symmetrized octonion distance, see Eqs. (1)–(3) of the main paper). However,
comparison with the original octonion metric [2] gives overestimation for some boundaries. This is
an inherent feature of the VFZO framework that can be addressed via use of the ensemble methods
described in Section 2.1.3 (see also Figures 3 and 4).

Additionally, the use of an isometry equivalence relationship in Morawiec [4] in a non-VFZ sense
results in identical distance results within numerical tolerance (Figure S2).
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Figure S2: GB distances calculated with one grain boundary octonion fixed vs. the traditional calculations in Chesser
et al. [3] show that the isometry equivalence discussed in Morawiec [4] applies to grain boundary octonions.

S2. Additional Interpolation Results

S2.1. 388 and 10 000 input GBs

Interpolation results for 388 and 10 000 GBs are given in Figure S3 and Figure S4, respectively.

S3. Ensemble Interpolation Results

Ensemble interpolation is a classic technique that can be used to enhance predictive performance
of models. Here we describe our methods (Section S3.1), results (Section S3.2), and the potential of
integrating ensemble interpolation with a Gaussian process regression mixture scheme (Section S3.3).

S3.1. Methods

VFZO ensemble1 interpolation occurs by:

1. generating multiple reference octonions to define multiple VFZs

2. obtaining multiple VFZO representations for a set of GBs based on the various reference octonions

3. performing an interpolation (e.g. GPR) for each of the representations

4. homogenizing the ensemble of models (e.g. by taking the mean or median of the various models)

1Ours is a “bagging”-esque ensemble scheme because the same interpolation method (GPR) is used but with different
representations for the input data.

3



Figure S3: Hexagonally binned parity plots for 388 input and 10 000 prediction octonions formed via pairs of a random
cubochorically sampled quaternion and a spherically sampled random boundary plane normal. Interpolation via (a)
GPR, (b) inverse-distance weighting, (c) NN, and (d) barycentric coordinates. Bulatov Reed Kumar GBE function for
face-centered cubic Ni [5] was used as the test function.

S3.2. Results

Use of an ensemble interpolation scheme decreases interpolation error for a GPR model with 50 000
input and 10 000 prediction VFZOs. By using an ensemble size of 10 (i.e. 10 GPR models each with
different reference octonions and therefore different VFZs), root mean square error (RMSE) and mean
absolute error (MAE) decreased from 0.0241 J m−2 and 0.0160 J m−2 to 0.0187 J m−2 and 0.0116 J m−2,
respectively, using the median homogenization function (Figure S5).

Figure S6 shows the hexagonally binned parity plots for predictions made using the mean, median,
minimum, and maximum predicted values over an ensemble of 10 VFZs. Qualitatively, the ensemble
mean and ensemble median parity plots look similar to those from the main text (Figure 6), though the
distributions of the ensemble scheme are somewhat tighter. The ensemble minimum produces better
predictions of low GBE than any of the other models, but underestimates high GBE as expected.
Naturally, the ensemble maximum overestimates in general. Diminishing returns manifest in Figure S5
for mean and median homogenizations. This is to be expected because the original octonion distances
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Figure S4: Hexagonally binned parity plots for 10 000 input and 10 000 prediction octonions formed via pairs of a random
cubochorically sampled quaternion and a spherically sampled random boundary plane normal. Interpolation via (a)
GPR, (b) inverse-distance weighting, (c) NN, and (d) barycentric coordinates. Bulatov Reed Kumar GBE function for
face-centered cubic Ni [5] was used as the test function.

[2] are well-approximated using an ensemble size of 10 (Figure 3c and Figure 4).

S3.3. Possibility: Combining Ensemble with Gaussian Process Regression Mixture

A scheme which preferentially favors the ensemble minimum for low GBE predictions and defaults
to ensemble mean or median for all other GBEs may produce even better results across the full range
of GBEs. For example, this could be accomplished by combining the ensemble scheme described here
with the GPR mixture model described in Section S5.1.

S4. Barycentric Interpolation

S4.1. High-Aspect Ratios

An artifact of the barycentric interpolation method which occurs due to the presence of high-aspect
ratio facets is shown in Figure S7. As the dimensionality increases for a constant number of points and
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Figure S5: (a) RMSE and (b) MAE vs. ensemble size for mean, median, minimum, and maximum homogenization
functions. A GPR model with 50 000 input and 10 000 prediction VFZOs was used.

from our numerical tests, the rate of missed facet intersections increases. This artifact and our method
for addressing it are discussed in Appendix B.2 of the main text.

S5. Kim Interpolation

A GPR mixing model is developed to accommodate the non-uniformly distributed, noisy Fe simu-
lation data [6] and better predict low GBE. Details of the method (Section S5.1) and an analysis of
the input data quality (Section S5.2) are given. The code implementation is given in gprmix.m and
gprmix test.m of the VFZO repository [1].

S5.1. Details of Gaussian Process Regression Mixture

As shown in Figure S8a, prediction using the standard approach of the main document (termed the
ε1 model) overestimates low GBEs for this dataset. By training the model on only GBs with a GBE less
than 1.2 J m−2 (termed the ε2 model) and by using an exponential (KernelFunction='exponential')
rather than a squared exponential kernel, prediction of low GBEs improves, but naturally underestima-
tion occurs for higher GBEs (Figure S8b).

A combined, disjoint model (Figure S8c) is taken (ε3) by replacing ε1 GBE predictions for GBs with
GBE less than 1.1 J m−2 with the corresponding ε2 predictions. Finally, a weighted average (Eq. (S1))
is taken according to:

εmix = fε1 + (f − 1)ε2 (S1)

where ε1 and ε2 represent the standard GPR model and the GPR model trained on the subset of GBs
with a GBE less than 1.2 J m−2, respectively, and f is the sigmoid mixing fraction given by:

f =
1

e−m(ε3−b) + 1
(S2)
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Figure S6: Hexagonally binned parity plots for (a) mean, (b) median, (c) minimum, and (d) maximum ensemble homog-
enization functions. A GPR model with 50 000 input and 10 000 prediction VFZOs was used.

and shown in Figure S9 with m = 30 and b = 1.1 J m−2, as used in this work. Larger values of m yield
a steeper sigmoid function and larger values of b shift the sigmoid function further to the right. Specific
values for m and b were chosen by visual inspection and trial and error. This results in a GPR mixing
model which better predicts low GBEs while retaining overall predictive accuracy (Figure S8d).

Uncertainty of the GPR mixing model is similarly obtained by taking a weighted average of the
uncertainties of each model according to:

σmix = fσ1 + (f − 1)σ2 (S3)

where σ1 and σ2 are the corresponding uncertainties of ε1 and ε2, respectively, and f is given by Eq. (S2).
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Figure S7: Illustration of two prediction points (red) for which no intersecting facet is found due to being positioned
within a high-aspect ratio facet. The inset shows that facets connected to the NN do not contain the prediction point.
Many NNs would need to be considered before an intersection is found. Additionally, it is expected that if found, the
interpolation will suffer from higher error due to use of facet vertices far from the interpolation point. Proper intersections
of prediction points with the mesh are shown in blue.

S5.2. Input Data Quality

Of the ∼60 0002 GBs in [6], ∼10 000 GBs were repeats that were identified by converting to VFZOs
and applying VFZO repository function avg repeats.m. In [6], mechanically selected GBs were those
which involved sampling in equally spaced increments3 for each five degree-of-freedom parameter, and
a few thousand intentionally selected GBs (i.e. special GBs) were also considered. Of mechanically and
intentionally selected GBs, 9170 and 112 are repeats, respectively, with a total of 2496 degenerate sets4

(see Figure S10 for a degeneracy histogram). Thus, on average there is a degeneracy of approximately
four per set of degenerate GBs.

By comparing GBE values of (unintentionally5) repeated GBs in the Fe simulation dataset [6], we
can estimate the intrinsic error of the input data. For example, minimum and maximum deviations from
the average value of a degenerate set are −0.2625 J m−2 and 0.2625 J m−2, respectively, indicating that
a repeated Fe GB simulation from [6] can vary by as much as 0.525 J m−2, though rare. Additionally,
RMSE and MAE values can be obtained within each degenerate set by comparing against the set
mean. Overall RMSE and MAE are then obtained by averaging and weighting by the number of GBs
in each degenerate set. Following this procedure, we obtain an average set-wise RMSE and MAE of
0.065 29 J m−2 and 0.061 90 J m−2, respectively, which is an approximate measure of the intrinsic error
of the data. Figure S11 shows histograms and parity plots of the intrinsic error. The overestimation
of intrinsic error mentioned in the main text (Section 3.4) could stem from bias as to what type of

2The “no-boundary” GBs (i.e. GBs with close to 0 J m−2 GBE) were removed before testing for degeneracy.
3In some cases, this was equally spaced increments of the argument of a trigonometric function.
4A degenerate “set” is distinct from a VFZO “set”, the latter of which is often used in the main text.
5To our knowledge, the presence of repeat GBs were not mentioned in [6] or [7]
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Figure S8: (a) Hexagonally binned parity plot of the standard GPR model. (b) All prediction GBs based on the model
using only training GBs with a GBE less than 1.2 J m−2. (c) Combined disjoint model as explained in the text. (d)
Hexagonally binned parity plots of the final GPR mixing model. Points in (c) are produced by splitting the prediction
data into less than and greater than 1.1 J m−2. A sigmoid mixing function (Figure S9) is then applied where the predicted
GBEs shown in (c) determines the mixing fraction (f) to produce a weighted average of models (a) and (b). A large Fe
simulation database [6] using 46 883 training datapoints and 11 721 validation datapoints in an 80%/20% split. The GPR
mixture model decreases error for low GBE and changes overall RMSE and MAE from 0.057 932 J m−2 and 0.039 857 J m−2

in the original model (shown in (a)) to 0.055 035 J m−2 and 0.039 185 J m−2 (shown in (d)), respectively.
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Figure S9: Sigmoid mixing function used in the GPR mixing model with m = 30 and b = 1.1 J m−2 (Eq. (S2)).

GBs exhibit repeats based on the sampling scheme used in [6] and/or that many of the degenerate sets
contain a low number of repeats (Figure S10).

Next, we see that by binning GBs into degenerate sets, most degenerate sets have a degeneracy of
fewer than 5 Figure S10. We split the repeated data into sets with a degeneracy of fewer than 5 and
greater than or equal to 5 and plot the errors (relative to the respective set mean) in both histogram
form (Figure S11a and Figure S11c, respectively) and as hexagonally-binned parity plots (Figure S11b
and Figure S11d, respectively). While heavily repeated GBs tend to give similar results, occasionally
repeated GBs often have larger GBE variability. This could have physical meaning: Certain types
of (e.g. high-symmetry) GBs tend to have less variation (i.e. fewer and/or more tightly distributed
metastable states). However, it could also be an artifact of the simulation setup that produced this data
(e.g. deterministic simulation output for certain types of GBs).

S6. Olmsted Interpolation

As illustrated in Figure S12, leave-one-out cross validation interpolation results for 0 K molecular
statics low-noise Ni simulations using the GPR method are similar to Laplacian kernel regression results
reported in Figure 6a of Chesser et al. [3] (reproduced on the right of Figure S12 for convenience).
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Figure S10: Histogram of number of sets vs. number of degenerate GBs per set for the Fe simulation dataset [6]. Most
sets have a degeneracy of fewer than 5.
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Figure S11: Degenerate GBs sets are split into those with a degeneracy of fewer than 5 and greater than or equal to 5
and plotted as ( (a) and (c), respectively) error histograms and ( (b) and (d), respectively) hexagonally-binned parity
plots. Large degenerate sets tend to have very low error, whereas small degenerate sets tend to have higher error. In
other words, GBs that are more likely to be repeated many times based on the sampling scheme in [6] tend to give similar
results, whereas GBs that are less likely to be repeated often have larger variability in the simulation output. We do not
know if this has physical meaning or is an artifact of the simulation setup.
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Figure S12: (left) Hexagonally binned parity plot for Ni simulation grain boundary energy (GBE) interpolation using
LOOCV. (right) Parity plot for leave-one-out cross validation (LOOCV) interpolation results reproduced from Figure 6a
of Chesser et al. [3] under CC-BY Creative Commons license.
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Glossary

GB grain boundary 2, 3, 6, 8–12

GBE grain boundary energy 2, 4–10, 13

GPR Gaussian process regression 2–7, 9, 10

LOOCV leave-one-out cross validation 13

MAE mean absolute error 4, 6, 8, 9

NN nearest neighbor 2, 4, 5, 8

RMSE root mean square error 4, 6, 8, 9

VFZ Voronoi fundamental zone 2–4

VFZO Voronoi fundamental zone octonion 1–4, 6–8
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