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Abstract

Grain boundary networks (GBNs) have a profound influence on the properties of both structural
and functional materials. However, existing methods to characterize their complex structure have
almost universally relied upon a binary classification of GBs as either “special” or “general”, which
ignores the rich and continuous spectrum of GB types and properties. Furthermore, characterizing
the aggregate network structure of GBs has proven complicated, with traditional methods focus-
ing on local structure and also relying on a binary GB taxonomy, e.g. by evaluating how many
“special” or “general” boundaries meet at triple junctions or quadruple nodes. Here we develop
new structural metrics for GBNs, based on spectral graph theory, that encode both global network
topology and the full spectrum of constituent GB properties, enabling high-fidelity characterization
of arbitrary GBNs. Using these metrics, we derive an new structure-property relation for GBN dif-
fusivity. The dominant term in this expression provides an efficient and accurate approximation,
whose corresponding spectral metrics reveal the dominant microstructural features influencing the
property of interest. The spectral index of this term serves as a type of global order parameter
that reveals a fundamental structural transition in GBNs. This work provides a new framework
to characterize the structure of GBNs in greater generality than previously possible and facilitates
the development of new defect-sensitive structure-property models.

Keywords: Grain Boundary, Networks, Homogenization, Diffusion, Spectral Graph Theory

1 Introduction

Grain boundaries (GBs) in polycrystalline materials form a complex network of inter-crystalline inter-
faces, whose collective structure strongly influences many materials phenomena including strength [1, 2],
corrosion [1, 3, 4], stress-corrosion cracking [5], spallation [6], creep [7], hydrogen embrittlement [2], solar
cell efficiency [8, 9], superconductivity [10], and nuclear fuel performance [11–13]. Because of the com-
plexity of their combined crystallographic and topological degrees of freedom, grain boundary networks
(GBNs) have historically been characterized using reduced order metrics. Computational and experi-
mental studies (including our own) both routinely employ a binary classification of the constituent grain
boundaries as either “special” or “general” and assign all boundaries of a given type identical properties
(a few notable exceptions include [14–16]). It is also common to model grain boundary networks using
simple idealized geometries as illustrated in Fig. 1a. In contrast, real grain boundary networks (Fig. 1b)
are composed of a continuous spectrum of grain boundary types, whose properties span many orders
of magnitude and whose topology is far more complex than what is captured by such idealizations. If
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Figure 1: (a) Idealized model of a grain boundary network with general (high-angle) boundaries in
light grey and special (low-angle) boundaries in bold black lines. (b) A real grain boundary network
from a sample of Inconel 690 (data courtesy C.A. Schuh) with boundaries colored according to their
misorientation [17].

the structure of grain boundary networks were better understood, it would be possible to devise novel
processing routes to control it and, thereby, achieve substantial performance enhancements across all
classes of polycrystalline materials.

A complete description of the structure of grain boundary networks requires specification of the
character (e.g. crystallography or properties) of individual grain boundaries and how they are assembled.
The network structure of grain boundaries may, at first, appear random, but is, in fact, highly correlated
due to crystallographic constraints, processing history, and both kinetic and thermodynamic influences.
Several approaches have been devised to quantitatively characterize various aspects of GBN structure;
these include tools from percolation theory (e.g. correlation lengths, cluster sizes, etc.) [18], Betti
numbers [19, 20], triple junction fractions [21–25], quadruple node fractions [26], swatches [27], and
twin-related domain (TRD) sizes [28, 29]. These descriptions focus primarily on topological structure.
Those that incorporate information about GB types employ the binary “special vs. general” taxonomy of
boundaries. Building on this previous work, we develop a new technique to simultaneously characterize
the complex topological structure of GBNs and the full spectrum of GB types/properties in arbitrary
polycrystalline materials.

2 A New Approach

In the diverse fields of computer science, ecology, and biology, complex networks exist (e.g. plant-
pollinator networks, or protein interaction networks) and have been analyzed using the mathematical
tools of spectral graph theory (SGT) [30–34]. Perhaps the best known example is the PageRank algo-
rithm that forms the core of Google’s search engine [30, 34, 35]. PageRank models the complex network
of internet websites as a graph (corresponding to a Markov Chain), which is represented as a matrix (the
transition matrix). The PageRank—an importance metric used to determine the relevance of a website
to a search query—is given by the principal eigenvector of this matrix. In other words, PageRank uses
spectral decomposition of the network structure of the Web to determine its dominant features and
correlate these with query relevance. By analogy, we hypothesize that spectral decomposition can be
applied to the network structure of materials to characterize their dominant microstructural features
and correlate these with material properties.

Studying an analogous problem for membranes, Marc Kac famously asked the question “Can one
hear the shape of a drum?” [36], which was the title of a study in which the author investigated what
information about the shape of a drum (or tambourine) could be inferred from its timbral spectrum.
Here we ask a related question for grain boundary networks: “What can we learn about the complex
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Figure 2: Discretization of a GBN showing nodes and edges. The source and sink supernodes are
shown in green and red, respectively. The direction of the macroscopic flux, J , is indicated along with
the sample length, L. Representative nodes, i and j are labeled along with the length of the edge
connecting them, Lij.

structure of grain boundary networks and their effective properties by analyzing their eigenvalues and
eigenvectors?”

3 Methods

3.1 Eigendecomposition of a GBN and its Properties

We will consider two-dimensional GBNs, though the methods presented should be applicable to fully
three-dimensional GBNs as well. A GBN is represented as an undirected weighted graph, defined by
the ordered triplet G = (V,E,W ), via discretization, where V is the set of vertices (also called nodes),
E is the set of edges, and W is the set of edge weights. Nodes (vertices) are located at triple junctions
(TJs) and along GBs, and are connected by GB segments (edges) as illustrated in Fig. 2. The details of
node placement and density for our particular examples are discussed in Section 3.2. In addition to the
standard nodes, we create a supernode on one side of the microstructure that represents a diffusion source
(node a in Fig. 2) and another supernode on the opposite side representing a diffusion sink (node b in
Fig. 2). These supernodes span the entirety of their respective side of the sample and have many edges,
whereas normal nodes in these GBNs possess only 2 or 3 edges. We use periodic boundary conditions
in the direction orthogonal to the macroscopic flux (i.e. GBs that exit the top of the microstructure
re-enter at the bottom with identical diffusivity so that flux across the periodic boundary is continuous).

By exploiting an analogy with electrical resistor networks [37, 38], the effective diffusivity of an
arbitrary GBN can be expressed as:

Deff =
L

A

[
(ea − eb)

T L+ (ea − eb)
]−1

(1)
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In Eq. 1, ea is a vector who’s a-th element (corresponding to the index of the source supernode) is
equal to 1 and all others are 0, eb is defined similarly. L and A are the sample length and cross-
sectional area, respectively (without loss of generality, we assume the sample to be square with some
out-of-plane thickness H so that A = LH). For the present work we considered microstructures with
L = 1 mm, H = 0.1 mm, and A = 0.1 mm2. The superscript T denotes the usual transpose operation.
The superscript + indicates the Moore-Penrose pseudoinverse of the matrix L, where L is the weighted
Laplacian of the GBN graph. L encodes the topology of the GBN and the properties of each GB. With
edge weights defined as Wij = DijAij/Lij, the elements of L are given by

Lij =


∑
i∼m

DimAim/Lim if i = j

−DijAij/Lij if i ∼ j

0 otherwise

(2)

where Dij, Aij, and Lij are, respectively, the diffusivity, cross-sectional area, and length of the edge
connecting nodes i and j, with i ∼ m indicating that an edge exists between nodes i and m (i.e. the
summation is over all nodes directly connected to node i). For the present work, we assumed a uniform
GB width of 0.5 nm, and an out-of-plane thickness of HGB = H = 0.1 mm, leading to a uniform GB
cross-sectional area of Aij = 5× 10−14 m2 ∀ (i, j) ∈ E. The matrix L is real and symmetric and can be
decomposed according to

L = UΛU−1 (3)

where Λ is the diagonal matrix of eigenvalues (Λij = λiδij) and U is the matrix whose columns are the
eigenvectors of L. Introducing Eq. 3 into Eq. 1 and simplifying we obtain, in summation notation,

Deff =
L

A

(∑
k>1

λ−1
k [uk(a)− uk(b)]2

)−1

(4)

In this expression λk is the k-th eigenvalue of L and uk(a) and uk(b) are, respectively, the a-th and
b-th elements of the k-th eigenvector, with a and b being the indices of the source and sink nodes,
respectively. By convention, the eigenvalues are sorted such that 0 = λ1 ≤ λ2 ≤ · · · ≤ λK , where K is
equal to the number of nodes in the graph (i.e. the cardinality of V , sometimes denoted |V |). Eq. 4
allows us to compute the effective diffusivity of the GBN from the eigenvalues and eigenvectors of its
corresponding graph representation.

An important feature of the SGT approach and the spectral expression embodied in Eq. 4 is that
it permits us to decompose the structure of the GBN into its fundamental structural “frequency” and
higher-order “over-tones” with respect to the property of interest (Deff). Consider the approximation
obtained using only the dominant (largest) term of this series, whose spectral index we will denote k̃:

D̃eff =
L

A

λk̃
[uk̃(a)− uk̃(b)]2

(5)

Because all of the terms in Eq. 4 are non-negative, Eq. 5 represents a lower-bound on the effective
diffusivity. It is worth noting that Eq. 5 is a homogenization relation for GBNs that allows the prediction
of the effective diffusivity of a GBN, requiring only 3 microstructure dependent numbers: λk̃, uk̃(a), and
uk̃(b). We hypothesize that the eigenvalue and eigenvector corresponding to the dominant term encode
the microstructural features that govern the effective response of the GBN. The dominant eigenvalue and
eigenvector of the GBN provide natural and flexible structural metrics that highlight the microstructural
features that control the property of interest.
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To test this hypothesis we generated a large number of distinct microstructures, constructed the GBN
laplacian (L) of each, computed all of the corresponding eigenvalues and eigenvectors, computed Deff

and D̃eff, and explored the possibility of a correlation between the dominant eigenvector and structural
features in the GBN.

Before describing the technical details of the numerical implementation, it is instructive to note the
similarities and differences between the SGT approach presented here and prior art. The derivation
leading to Eq. 1 is implicitly based on a finite volume scheme with the assumption of linear profiles
between one-dimensional cell centroids, and employing Neumann boundary conditions. Consequently,
the discretization of the GBN domain is reminiscent of the finite volume method1 (FVM), as well as
related numerical methods for solving partial differential equations such as the finite element method
(FEM) and the finite difference method (FDM). Indeed, any of these techniques could be used to solve
the diffusion equation in order to obtain an approximation to the concentration field (i.e. the concen-
tration at each node in the GBN). However, the present work is not concerned with determining nodal
concentrations, rather our object is homogenization: evaluating the effective diffusivity of a heteroge-
neous domain (the GBN). While these methods could also be employed for this purpose, they would
require the indirect multi-step process of computing the macroscopic flux from the nodal concentrations
and subsequently the effective diffusivity as the ratio of the magnitudes of the flux and macroscopic
concentration gradient. In contrast, the SGT approach computes the effective diffusivity in a single
step, directly from L, and is, therefore, ideally suited to the task of GBN homogenization.

Another significant difference is in the manner that the eigenvalues and eigenvectors of L are employed
and interpreted. The definition of a matrix like L is not entirely unique to the SGT method described in
the present work, as techniques such as FVM, FEM, and FDM also result in systems of equations that
define characteristic system matrices (e.g. the system stiffness matrix in the FEM). Eigenvalues and
eigenvectors of such system matrices have also been considered, e.g. in FEM the ratio of the extremal
eigenvalues (largest to smallest) provides the condition number, which is used in error estimation [39–41].
It is worth noting that system stiffness matrices of fully constrained FEM models are invertible [40],
whereas L is, by definition, singular (hence the Moor-Penrose pseudoinverse in Eq. 1) [38]. A key
difference between prior art and the present work is that rather than being concerned with the largest
or smallest eigenvalues of the system matrix (and their corresponding eigenvectors), we find that the
eigenvalues and eigenvectors most relevant to the homogenization problem are those that correspond to
the largest terms in Eq. 4—which, in contrast, we have observed to always be intermediate eigenvalues
of L—and we demonstrate how these can be used as metrics to characterize GBN structure through
connection with ideas from spectral graph partitioning. We show that this novel approach yields new
physical insight into the role of GBs with intermediate properties (Section 4.1), the existence and nature
of a network scale structural transition (Sections 4.3–4.4), and the influence of triple junction characters
on network connectivity (Section 4.5).

3.2 Generation of Synthetic Microstructures

GBN templates were first constructed via a 2D isotropic front-tracking grain growth code written by
Jeremy Mason2. The density and position of the nodes are determined by this code, with nodes located
at each TJ and additional nodes located along GBs. The density of the GB nodes is larger over regions
of higher curvature. A total of 1771 distinct microstructures were generated, each containing between
99 and 100 grains.

1Though a full numerical convergence analysis is beyond the scope of the present study, this suggests that the sensitivity
to discretization density should be similar to that of FVM.

2The code is based on the algorithm of [42], and is available at http://web.boun.edu.tr/jeremy.mason/documents/
FTGG2_v1_0.zip
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Figure 3: The TJ fraction (Ji) configuration space with representative microstructures indicated. Grains
are colored by their crystallographic orientation, θ. The images shown here are magnified subregions of
larger microstructures for the sake of visibility (i.e. there were more grains in the actual microstructures
than are shown here).

The grains in these microstructures possessed cubic crystal symmetry and shared a common 〈001〉
rotation axis so that orientations were characterized by a scalar, θ ∈ [0◦, 90◦]. This construction results
in microstructures exhibiting perfect fiber textures, similar to those frequently considered in compu-
tational work [16, 18, 25, 26, 43–45], which, although difficult to synthesize experimentally, have the
advantage that all of the resulting GBs exhibit exclusively tilt character by construction and, as de-
scribed in Section 3.3, this facilitates connection with experimentally observed structure-property trends
for GB diffusivity (trends in diffusivity over the full 5D GB character space have not yet been fully char-
acterized). Grain orientations were assigned using the following Simulated Annealing procedure. First,
grains were assigned an orientation uniformly at random from θ ∈ U(0◦, 90◦). GB disorientation angles,
which we denote ω, were then computed and, defining low-angle GBs (LAGBs) by ω ≤ 15◦, TJ frac-
tions [21–25] were also computed. The TJ fractions, {Ji | i ∈ {0, 1, 2, 3}}, denote the fraction of TJs in
a particular microstructure that are coordinated by i LAGBs. Since, Ji ∈ [0, 1] ∀ i and

∑3
i=0 Ji = 1,

the space of physically realizable TJ fractions corresponds to a 3-simplex (tetrahedron), as shown in
Fig. 3. This space is analogous to a quaternary phase diagram: the vertices correspond to microstruc-
tures in which all TJs are of one type while points in the interior contain a mixture of each type. This
space was discretized into bins of width 0.05, resulting in a total of 1771 bins. After the initial random
assignment of grain orientations, a microstructure was driven to one of these bins by allowing the re-
assignment of the orientation of a randomly selected grain at each Monte Carlo step. Reassignments
that lowered the difference between the instantaneous {Ji} and the target {Ji} were always accepted,
while reassignments that increased this difference were accepted with a finite probability that decreased
with each step, similar to the methods used in [46]. One microstructure was driven towards each of the
1771 bins. However, as has been noted in [47], some locations in this space are difficult or impossible
to reach with finite sized microstructures (e.g. a microstructure composed exclusively of J0 and J3 type
TJs is topologically frustrated and can only be constructed in the limit of an infinite microstructure).
Consequently, some destinations were not reached and the microstructures driven towards them instead
converged to nearby bins. Using this procedure we generated microstructures that spanned the majority
of the triple-junction space (see Fig. 3). Because the {Ji} encode local correlations, this allowed us to
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test our hypothesis on a diverse set of microstructures whose GBN structures and effective properties
varied dramatically.

3.3 Constitutive Equations

After each microstructure was generated, GBs were assigned a diffusivity based on their disorientation
angle according to one of two types of constitutive equations shown in Fig. 4. Figure 4a is a step
function approximation that is often employed in simulations [44, 45, 48–52], and which we refer to as
the bichromatic (i.e. binary) constitutive model. Figure 4b is a continuous function similar in form
to what is observed in both experiments and simulations for 〈001〉 tilt GBs in FCC metals [53, 54]
(all GBs in our microstructures are tilt GBs by construction). Because the constitutive equations
used in the present work depend only on disorientation angle (not GB plane) the subtle asymmetry
about ω = 45◦ that is observed in experiments is not present. This simplification is not essential, and
the methods presented here are compatible with arbitrary constitutive models (e.g. the dependence
on GB plane could be included if such a model was available). To explore the influence of property
contrast (i.e. the ratio of the maximum to minimum diffusivity), we tested three different contrast
ratios: Dhigh/Dlow ∈ {101, 103, 107}.

Figure 4: Constitutive equations used for GB diffusivity. Vertical axis is logarithmically scaled.

With diffusivities assigned to each edge, Eq. 2 was used to construct the corresponding diffusivity-
weighted GBN Laplacian. The eigenvectors and eigenvalues were then computed and Eqs. 4–5 were
used to compute the exact and approximate effective diffusivities of each microstructure respectively.

4 Results & Discussion

4.1 Homogenization for GBNs

Few homogenization relations for defect sensitive properties exist [55]. Previous work on GBN diffusivity
has employed effective medium theory (EMT) [15, 16, 45], percolation theory (PT) [45], and the gener-
alized effective medium (GEM) equation [45, 51, 52]. EMT provides useful results when the property
contrast is low or the microstructures under consideration do not contain a percolating path of high-
diffusivity boundaries. PT models apply when the property contrast is high and when the spectrum of
GB types can reasonably be appoximated as bichromatic (i.e. consisting of only two types of GBs). The
GEM is a phenomenological model that combines elements of EMT and PT and provides accurate results
across a broad range of contrast ratios for bichromatic constitutive models [45]. Although less studied,
polychromatic and multicomponent percolation models have been developed to investigate transport in
the presence of a system composed of a finite number of component types [56–60]. A polychromatic
percolation model was developed and applied to the problem of GBN diffusivity by Chen & Schuh [45].
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It has been observed in simulations that the location of the percolation threshold is sensitive to corre-
lations that exist in real microstructures, and this is not captured by classical PT models. Previous work
has demonstrated how sensitivity to local correlations may be incorporated into the GEM [51, 52], and
accurate predictions were obtained for certain classes of microstructures. However, predicting effective
diffusivity in the vicinity of the percolation threshold remains challenging for general microstructures.

In what follows, we demonstrate that the SGT approach presented in this paper provides a homog-
enization equation for GBN diffusivity (Eq. 5) that yields accurate predictions for both bichromatic
and continuous constitutive models over a broad range of property contrast ratios and microstructural
correlations.

For the bichromatic constitutive model, the predictions of the 1-term SGT approximation from the
present work (Eq. 5) are shown in Fig. 5a. The agreement is excellent for all of the microstructures
(below, at, and above the percolation threshold). For the continuous constitutive model, which is a better
representation of true GB structure-property relations, the performance of the 1-term SGT predictions
were also found to be excellent across a wide range of property contrast ratios (Fig. 5b). Because Eq. 5
is a lower-bound, all of the deviation is to the left of the red lines (coincidence with the red lines would
indicate perfect agreement).

Figure 5: Comparison of 1-term SGT predictions (D̃SGT
eff ) from Eq. 5 to actual effective diffusivity (Deff)

for all 1771 microstructures using (a) the step function constitutive equation (shown in inset) or (b)
the continuous constitutive equation (shown in inset) for three different contrast ratios (see legend). If
agreement was perfect, all points would fall on the respective red lines. Axes are logarithmically scaled
and values have been normalized and shifted vertically so that they could be plotted side by side for
comparison (thus axis tick marks have been omitted).

For the oft-employed bichromatic constitutive model, the gap between percolating and non-percolating
microstructures gradually disappeared as the property contrast ratio decreased. In comparison, the mi-
crostructures whose GBs were assigned diffusivities based on the more realistic continuous constitutive
equation were not separated into percolating and non-percolating microstructures, but instead showed a
continuous spectrum of effective diffusivities even at the highest contrast ratios (contrast ratios as high
as Dhigh/Dlow = 1028 were tested with essentially identical results). This suggests that the presence of
GBs with intermediate diffusivities can play a non-negligible role in determining the effective diffusivity
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of a GBN, even when the property contrast is extremely high. We recommend, therefore, that future
modeling efforts incorporate continuous or at least polychromatic constitutive models.

4.2 Dominant GBN Structural Features and Eigenvectors

It is useful to think of the eigenvectors of the GBN, uk, as being analogous to the eigenmodes of
a vibrating string. The eigenvector corresponding to the dominant term in Eq. 4, denoted uk̃, can
be thought of abstractly as the eigenfunction, uk̃(v) with v ∈ V , representing the dominant structural
“vibration” (i.e. the dominant eigenmode) of the GBN. In other words, it encodes the structural features
of the GBN that dominate the effective response of the network: Deff in the present case.

Visualization of uk̃ therefore provides insight into what structural characteristics of a GBN govern its
aggregate behavior. Two representative examples for the bichromatic constitutive model are instructive.
Figure 6a shows a visualization of uk̃ for a microstructure that does not percolate and consequently has
a low Deff. The height and color of node v is given by the value of the v-th element of uk̃. The smooth
sinusoidal appearance is characteristic of microstructures below the percolation threshold, which are
relatively homogeneous, and for which the eigenvector shows a gradual transition because its value at
any given node is very similar to that of its neighbors.

Figure 6b shows a visualization of uk̃ for a microstructure above the percolation threshold. In this
case there are large differences between the values of uk̃ at adjacent nodes and the trend is not smooth
in many places. The region of gradual transition is restricted to what appears to be a narrow path
connecting one side of the microstructure to the other, as is characteristic of the other percolating
microstructures we have observed.

Figure 6: Plot of uk̃(v) for GBNs (a) below and (b) above the percolation transition, respectively. The
color and height of node v are given by uk̃(v). For the sake of visual clarity, the nodes in (b) whose
values are very close to zero are not colored.

Figure 7 identifies this path with the percolating cluster of high-angle—and therefore high-diffusivity—
GBs (recall that the microstructure is periodic in the vertical direction). Not all of the high-diffusivity
GBs are highlighted by uk̃, as evidenced by the disconnected cluster of HAGBs on the right, because
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Figure 7: Top view of Fig. 6b with HAGBs and LAGBs indicated. For the sake of visual clarity, the
nodes whose values are very close to zero are not shown.

these do not contribute strongly to the global diffusion. Thus, the dominant eigenvector, uk̃, is able to
highlight the dominant feature of the GBN—which in this case happens to be a percolating cluster of
high-diffusivity GBs—that contributes to the phenomenon under investigation.

4.3 A General Structure Metric for GBNs

For the high-contrast bichromatic constitutive model, the microstructures were well separated into two
clusters: those that percolate (having high Deff) and those that do not percolate (having low Deff)
(see Fig. 5). For this case nearly all (97%) of the non-percolating microstructures had k̃ = 2 as their
dominant term. All but one of the percolating microstructures (99.9%) had k̃ > 2. The one exception was
a microstructure for which all GBs are of type Dhigh, which is structurally equivalent to a microstructure
for which all GBs are of type Dlow, just having its GB properties (and consequently Deff) modified by a
scaling factor. Thus, the index of the dominant term, k̃, can distinguish between structurally dissimilar
GBNs—those that percolate and those that do not—in the bichromatic case.

In the continuous case the gap between high diffusivity and low diffusivity GBNs disappears (see
Fig. 5b). However, k̃ still encodes important structural information, though it is more complex and
nuanced. The results presented in this section employ the continuous high-contrast (Dhigh/Dlow = 107)
constitutive equation. Because the number of nodes is not constant for all GBNs, it is useful to define a
normalized spectral index, k̃′ = (k̃− 1)/(K − 1). As the GB diffusivity distribution is no longer binary,
we also examine the entire distribution3, ρ[log(D)], for each microstructure and characterize it by its
length-weighted median. For a GBN possessing |E| edges (GB segments), with the i-th GB segment
having log-diffusivity log(Di) and length Li, sorted such that log(D1) ≤ log(D2) ≤ · · · ≤ log(D|E|), the

3We use ρ[x] to denote the probability density of x. Also, log(x) will denote the base-10 logarithm.
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Figure 8: In (a) the variation in Deff with changes in k̃′ and Mw(ρ[log(D)]) is shown. Representative
microstructures A-F are indicated as well as the approximate location (k̃′c) of the GBN structural
transition. The distributions, ρ[uk̃′(v)], for each of the microstructures contained in the three rectangular
regions in (a) are shown in the corresponding subplots in (b) as generalized spectrograms where color
indicates probability density. A gradual transition from bimodal to unimodal distributions in the vicinity
of k̃′c is evident.

length-weighted median, denoted Mw(ρ[log(D)]) is the element log(Dm) satisfying:

m∑
i=1

Li >
1

2

|E|∑
i=1

Li (6)

|E|∑
i=m

Li ≥
1

2

|E|∑
i=1

Li (7)

Figure 8a provides a scatter plot of Mw(ρ[log(D)]) vs. k̃′ with markers colored by log(Deff). We
observe the following trends: first, as Mw(ρ[log(D)]) increases (i.e. as ρ[log(D)] shifts towards higher
log(D)) the effective diffusivity increases, as would be expected; second, as we observed earlier in the
binary case, higher spectral indices are associated with increased connectivity of high-diffusivity GBs and
consequently higher Deff. Points labeled A-D in Fig. 8 correspond to microstructures with various values
of k̃′ and Mw(ρ[log(D)]) and are chosen to illustrate important GBN structural differences. Figure 9
shows uk̃′(v) for microstructures A-D (in color) as well as their respective GBNs with GBs colored
according to their diffusivity (in grayscale). The distributions ρ[uk̃′(v)], and ρ[log(D)] are also provided
in the corresponding colorbars.

Microstructure A exhibits an abrupt spatial transition in the values of uk̃′(v) from a broad plateau of
nodes having values uk̃′(v) ≈ 0.016 to a plateau of uk̃′(v) ≈ −0.008. As shown in the adjacent image of
log(D), the location of this sudden change corresponds to the position where the left and right portions
of the GBN are separated by GBs all having lower values of diffusivity. We observe that large gradients
in uk̃′(v) are correlated with bottlenecks for diffusive transport (i.e. GBs with low diffusivity) whereas
small gradients are indicative of easy transport paths. Microstructure C, which has a low value of k̃′

similar to that of microstructure A (but with a diffusivity distribution containing fewer high diffusivity
GBs), likewise shows an abrupt spatial transition in uk̃′(v) corresponding to a band of lower diffusivity
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Figure 9: For microstructures A-D from Fig. 8, plots of uk̃′(v) are shown (in color), as well as the
respective GBNs with GBs shaded by log(D) (in grayscale). The distributions ρ[uk̃′(v)] and ρ[log(D)]
are shown in the respective colorbars, with the scale of the vertical axes identical across all of the
microstructures to facilitate direct comparison.

GBs separating opposing sides of the microstructure in the direction of flux. Although their log(D)
distributions differ, the dominant structural characteristic of their GBNs is similar, as captured by their
similar values of k̃′.

This signature of the dominant structural feature of these GBNs is also manifest in the distribution
ρ[uk̃′(v)] (shown in the corresponding colorbars) as two well-separated peaks that correspond to these
weakly connected subpopulations of nodes. In contrast, the GBNs of microstructures B and D, which
are both characterized by much larger values of k̃′, show a gradual transition in the values of uk̃′(v)
across the microstructure, corresponding to a connected path of relatively high diffusivity GBs (note the
location of the connected paths of GBs with high log(D) that span the microstructures). A signature of
this type of GBN structure is also evident in the distribution ρ[uk̃′(v)], which has its density concentrated
around uk̃′(v) = 0. This characteristic difference in ρ[uk̃′(v)] is related to graph theoretic techniques
used for spectral graph partitioning [32, 61–65] and image segmentation [64, 66]. Images or graphs
for which the elements of the relevant eigenvector are distributed as well-separated subpopulations are
easily partitioned/segmented. For GBNs this scenario corresponds to microstructures that are weakly
connected and therefore have low values of Deff (microstructures A and C). Microstructures (or images)
like B and D, which do not exhibit well separated subpopulations of eigenvector elements are more
connected (and hence do not partition well) and have increased Deff.

The characterization of GBNs by their spectral index k̃′ and ρ[uk̃′(v)] provides a more general and
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flexible measure of network connectivity than has previously been available. Although GB clusters have
been examined previously by employing concepts from percolation theory (e.g. cluster mass, radius of
gyration) [18, 67], these methods rely on the binary characterization of GBs as “special” or “general” (i.e.
one examines the sizes of clusters of “special” boundaries). In the context of a continuous distribution of
GB types the definition of a cluster becomes less straightforward (where does one cluster end and another
begin?). The SGT metrics proposed here resolve this issue by effectively performing the clustering in
the space of the eigenvector elements, via the peaks/subpopulations revealed in ρ[uk̃′(v)], rather than
attempting to cluster discrete GB types in the space of the physical microstructure. Metrics that rely
on binary GB classification are well suited to answer the question of whether a particular type of GB
forms a sample spanning connected cluster. In contrast, the SGT metrics are capable of characterizing
the degree of global network connectivity.

4.4 A GBN Structural Transition

The fundamental change in the distribution ρ[uk̃′(v)] with increasing k̃′ is indicative of a GBN structural
transition and can be observed more generally, as shown in Fig. 8b. Each of the subplots in Fig. 8b
correspond to the microstructures contained in the adjacent rectangles in Fig. 8a and are separated
into three groups for clarity. It is apparent that as k̃′ increases there is a transition from well-separated
multimodal distributions to approximately unimodal distributions centered at uk̃′(v) = 0. This transition
is gradual and may have a slight dependence on Mw(ρ[log(D)]), but is largely complete above a value
of k̃′c ≈ 0.1827.

To investigate the impact of this GBN structural transition on the effective propertyDeff, we identified
subsets of GBNs with approximately identical distributions of GB types (i.e. ρ[log(D)])—so as to isolate
the effect of the structural transition—and observed changes in Deff with increasing k̃′. To identify sets
of GBNs with similar ρ[log(D)], we used Affinity Propogation (AP) [68], where the negative Jensen–
Shannon Divergence (JSD) [69], defined for the present case by

−JSD(ρi[log(D)]‖ρj[log(D)]) = −1

2

∫ ∞
0

ρi[log(D)] log

(
2ρi[log(D)]

ρi[log(D)] + ρj[log(D)]

)
+ ρj[log(D)] log

(
2ρj[log(D)]

ρi[log(D)] + ρj[log(D)]

)
d(log(D))

(8)

was used as the similarity measure. Discretizing the domain of log(D), an approximation to the negative

Euclidean distance (ED), −‖ρi[log(D)]− ρj[log(D)]‖ ≈
√∑M

m=1 (ρi[log(Dm)]− ρj[log(Dm)])2, was also

used as a similarity measure and the results were similar, though fewer sets (51) were obtained using the
JSD compared with the ED (78), and the results shown here are from the JSD sets. To further verify the
results we also created two new sets of microstructures using microstructures B and E from Fig. 8–11 as
templates and applying simulated annealing to reassign grain orientations so that the resulting GBNs
had values of k̃′ varying from 10−3 to 10−1, while keeping the distributions ρ[log(D)] constant.

As illustrated in Figure 10 the onset of the GBN structural transition observed in ρ[uk̃′(v)] in the
vicinity of k̃′c corresponds to a transition in Deff from consistently low values below k̃′c, to sharply
increasing Deff above it. This “critical” spectral index appears to play a role similar to the critical
temperature in second-order phase transitions. This structural transition, while analogous to the perco-
lation transition in bichromatic systems, is distinct in an important way: the transition is a continuous
one. For bichromatic systems there is a discontinuous change in the effective properties of the system
once the “infinite cluster” has formed, resulting in the distinct and well separated sets of percolating
and non-percolating microstructures observed in Fig. 5a. In a sense, with sufficiently high contrast the
bichromatic constitutive model approximately quantizes the effective properties of the system and there
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Microstructure pLAGB J0 J1 J2 J3 Deff (m2/s)

E 0.37 0.56 0.09 0.04 0.31 0.01

F 0.35 0.55 0.11 0.05 0.30 8.14

Table 1: The values of traditional GBN metrics for microstructures E and F, including the length-
fraction of low-angle GBs, pLAGB, and triple junction fractions, Ji. The effective diffusivity, Deff, for
each microstructure is also provided.

is a range of intermediate Deff values that is not observed. However, in the context of a continuous spec-
trum of constituent (i.e. GB) properties, both connectivity and clusters, whether infinite or otherwise,
are not well defined and the “phase transition” becomes continuous. We observe that, in both cases, the
dominant spectral index, k̃′, provides a general structure metric for GBNs, analogous to a GBN order
parameter, which encodes the global structure of the GBN and can be used to identify and characterize
fundamental structural and property transitions in GBNs.

Our use of the term “structural transition” deserves some justification. Although it is more of a
philosophical point than a technical one, we submit that from the perspective of the network the most
relevant description of structure is the spatial distribution or connectivity of properties, rather than the
connectivity of GBs of specific crystallographic characters. The properties of GBs are not monotonic
functions of their crystallographic character over the full 5-dimensional space, rather there are many
GBs whose crystallographic character is distinct (i.e. that are not symmetrically equivalent), but that
exhibit essentially identical properties [53, 54, 70]. Such boundaries have an indistinguishable effect on
the network and its effective properties. Consequently, we believe that, while certainly not the only
tenable perspective, the description of the transition in GBN structure in terms of property connectivity
is appropriate.

This is not to suggest that the crystallography is not important. On the contrary, the requirement
of crystallographic consistency [71] may impose constraints on allowed network configurations [18] and
consequently allowed spatial arrangements of properties. We investigate this affect and provide results
from this perspective in Section 4.5.

4.5 Comparison with Traditional GBN Metrics

It is worth noting that the SGT metrics presented here, especially k̃′, are the first structure metrics
for GBNs capable of simultaneously considering the realistic scenario of a continuous spectrum of GB
properties as well as the correlations that exist in real GBNs. As a comparison, consider microstructures
E and F (see Fig. 8), which have nearly identical fractions of low-angle grain boundaries and TJ fractions
(see Table 1)—the traditional metrics for GBNs—and yet whose Deff differ by more than 2 orders of
magnitude. In contrast, the spectral index, k̃′, is very different for these two GBNs and thus captures
the significant differences in their structure that are responsible for their widely varying properties. By
comparing ρ[uk̃′(v)] of these two GBNs (see the distributions in the respective colorbars of Fig. 11) it
is apparent that microstructure E and F are on opposite sides of the structural transition that occurs
in the vicinity of k̃′c and their very similar property distributions, ρ[log(D)], but clearly distinct GBN
structure, can be observed directly in Fig. 11.

At the same time, it is likely that there is some overlap in the structural information encoded by
traditional metrics and the SGT metrics presented here and it is instructive to examine how they may
be correlated. The most commonly used structural metrics for GBNs are the special fraction, pspecial,
which is the number- or length-fraction of “special” GBs, and the TJ fractions, {Ji | i ∈ [0, 3]}, which
were defined in Section 3.2. Both of these traditional metrics rely on a binary taxonomy of GBs as
possessing either “special” or “general” character, where “special” is typically defined as either LAGBs
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Figure 10: In (a)-(d) Deff is compared to k̃′ for four different clusters of microstructures obtained using
AP with negative JSD similarity measure. Plots of ρ[log(D)] are shown in the respective insets for each
cluster, with the distribution for each microstructure plotted in a different color. Note the similarity in
ρ[log(D)] within each cluster. The spectrograms of ρ[uk̃′(v)] for each cluster are also shown above/below
the respective plot and colored in the same fashion as Fig. 8b. In (e)-(f) the same plots are given for the
new sets of microstructures generated from microstructures B and E, respectively, using the simulated
annealing procedure described in the text.
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Figure 11: For microstructures E-F from Fig. 8, plots of uk̃′(v) are shown (in color), as well as the
respective GBNs with GBs shaded by log(D) (in grayscale). The distributions ρ[uk̃′(v)] and ρ[log(D)]
are shown in the respective colorbars, with the scale of the vertical axes identical to those from Fig. 9
to facilitate direct comparison.

or certain low-Σ coincident site lattice (CSL) boundaries. As pspecial does not encode any connectivity
information, we focus our comparison on the Ji. Figure 12 shows a plot of the Ji coordinates of all 1771
microstructures where the value of k̃′ for each microstructure is indicated by the corresponding marker
color. Microstructures with k̃′ < k̃′c are semi-transparent, while those with k̃′ > k̃′c are fully opaque
with black outlines to highlight the location of the GBN structural transition in this space. It is clear
from Fig. 12 that k̃′ increases with decreasing J2. This is sensible as J2-type TJs are coordinated by 2
low-angle and, consequently, low diffusivity GBs making them bottlenecks for mass transport, so one
would expect that fewer bottlenecks would lead to improved connectivity and consequently higher k̃′.
However, the situation is not quite so simple, as illustrated in Fig. 13.

For a given value of J2 a broad range of values of k̃′ are possible. This is because the TJ fractions
are measures of local connectivity, whereas k̃′ encodes global connectivity. Consequently, there are many
distinct GBN configurations having identical values of J2—or even having the same amounts of each TJ
type—but arranged in different spatial configurations. Likewise, a particular value of k̃′ can be achieved
with a variety of different TJ fractions, i.e. the global connectivity encoded in k̃′ can be achieved in
a variety of ways. However, there appears to be an upper bound on k̃′ that exponentially decays with
increasing J2 (see Fig. 13c). This suggests that while the local constraints imposed by the TJ fractions do
not fully specify k̃, they do limit how globally connected the microstructure can be. The GBN structural
transition that occurs in the vicinity of k̃′c can therefore be associated with a critical value of J2, which
we observe to be J2,c ≈ 0.2703. Microstructures with J2 > J2,c are unlikely to have well-connected GBNs
due to the effect of the corresponding local constraints on the global network structure.

Although the functional dependence is less obvious and not necessarily monotonic for the other Ji,
these too appear to bound the possible values of k̃′. Since J0-type triple junctions are coordinated by
all high-angle GBs, one would assume that increasing J0 would always lead to an increase in k̃′, but this
is not the case. Instead k̃′ reaches a maximum around J0 = 0.25 and then decreases. This highlights
the fact that k̃′ is not measuring the connectivity of a particular type of GB (e.g. high-angle), rather
it describes the network structure more generally. As J0 increases, the microstructure begins to become
saturated with high-diffusivity GBs and therefore becomes more homogeneous, that homogeneity is
reflected in the lower values of k̃′ which indicate that the dominant microstructural features correspond
to lower frequency GBN “vibrational” modes.

In contrast, the highest value of k̃′ is achieved for a microstructure composed primarily of a mixture
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Figure 12: Comparison of k̃′ and Ji. The Ji coordinates of all 1771 microstructures are given with
each marker colored by the value of k̃′ of the corresponding microstructure. Semi-transparent markers
correspond to microstructures with k̃′ < k̃′c.

of J0- and J3-type TJs (specifically, {J0, J1, J2, J3} = {0.245, 0.105, 0.055, 0.595}), which leads to a
very heterogeneous microstructure characterized by high frequency “vibrational” modes. In fact, as
illustrated in Fig. 14 the GBN has essentially phase separated into a corridor of high-diffusivity GBs
surrounded by a sea of comparatively low-diffusivity GBs. Since J0- and J3-type TJs cannot share a
GB—in a sense they are insoluble GBN constituents—as the microstructure becomes dominated by
these two types it must minimize the extent of the border between them. Indeed, a microstructure
composed of only J0- and J3-type TJs can only be achieved in the limit of an infinite microstructure.

The results of Sections 4.3-4.5 suggest that k̃′ provides a quantitative measure of the degree of global
connectivity and heterogeneity in GBNs in the context of continuous distributions of GB properties and
the existence of microstructural correlations, and as such, is able to identify global transitions in network
structure. This provides unique information beyond that of existing metrics and techniques, which either
characterize local structure only (Ji), consider a finite number of discrete GB types (percolation theory),
conflate connectivity and the distribution of GB types (critical path analysis [72]), or answer only the
binary question of whether the network is connected (percolation theory).

5 Summary/Conclusions

In this paper we introduced the use of spectral graph theory (SGT) to the study of grain boundary
networks (GBNs) in polycrystalline microstructures. The eigenvalues and eigenvectors of a diffusivity-
weighted GBN Laplacian provide a set of SGT-based structural metrics to characterize the dominant
structural features of GBNs.

In this context, we derived a series expression that provides a new homogenization (i.e. structure-
property) relation for the effective diffusivity of a GBN. Requiring only 3 microstructure sensitive pa-
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Figure 13: Plot of the spectral index (k̃′) vs. TJs fractions (Ji) for all 1771 microstructures. Inset shows
the same data on a semi-logarithmic scale to emphasize the exponential decay of the upper bound. Blue
curve is a visual guide to the upper bound corresponding to k̃′max ≈ exp [−3.0144J2 − 0.8851]. Red lines
indicate the approximate position of the critical values k̃′c and J2,c respectively.

rameters, the dominant term of this series provides an efficient approximation that yields accurate
predictions for continuous and bichromatic GB diffusivity constitutive models across a wide range of
property contrast ratios (100 to 107). The efficiency of this 1-term approximation is expected to enable
the consideration of GBNs within microstructure design strategies, which can require numerous function
evaluations during optimization and thus require computationally efficient homogenization models. To
the best of our knowledge, this is the first structure-property relation for GBNs that (a) can handle a
continuous constitutive model for individual GB properties as a function of their macroscopic crystallo-
graphic parameters across the entire range of possible effective properties (i.e. sub-critical, critical, and
super-critical regimes) and (b) automatically accounts for microstructural correlations that exist in real
GBNs.

Application of this SGT structure-property model to a large and diverse set of microstructures
elucidated the important role of GBs with intermediate properties on the effective diffusivity of GBNs
even for systems with very large property contrast. This may have implications for future GBN modeling
efforts.

The eigenvector corresponding to the dominant term in Eq. 4 represents a function on the domain
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Figure 14: For the microstructure with the largest value of k̃′, a plot of uk̃′(v) is shown (in color), as
well as the GBN with GB shaded by log(D) (in grayscale). The distributions ρ[uk̃′(v)] and ρ[log(D)]
are shown in the respective colorbars, with the scale of the vertical axes identical to those from Fig. 9
to facilitate direct comparison.

of the GBN nodes, uk̃(v), that describes the dominant eigenmode of the GBN. Visualization of uk̃(v)
naturally highlights the dominant features of the GBN that contribute to its aggregate behavior (i.e.
Deff).

In the context of continuous constitutive models, a GBN structural transition was identified, which
is characterized by a fundamental change in the distribution, ρ[uk̃′(v)], and can be identified by means
of the spectral index of the dominant term in Eq. 4, k̃ (or k̃′). Below a critical index, GBNs tend to be
more homogeneous, weakly connected, and have low effective diffusivities; above this critical index GBNs
become more heterogeneous, strongly connected and generally exhibit much higher effective diffusivities.
Combination of the dominant spectral index and the length-weighted median of the diffusivity distri-
bution facilitates the characterization of the structure and effective properties of GBNs with realistic
continuous distributions of GB properties.

It was found that while local constraints, such as those captured by TJ fractions, do not fully specify
global network connectivity, they do limit the possible global network configurations as evidenced by
the bounds observed in k̃′ as a function of the Ji.

While these methods were developed in the context of diffusivity, the extension to other GB properties
is natural and can be accomplished by replacing the weights in the GBN Laplacian with an appropriate
weight related to the property of interest.
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