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An Efficient Algorithm for Generating Diverse Microstructure Sets and
Delineating Properties Closures

Oliver K. Johnsona,b,∗, Christian Kurniawana
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bDepartment of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract

Properties closures delineate the theoretical objective space for materials design problems, allowing de-
signers to make informed trade-offs between competing constraints and target properties. We present a new
algorithm called hierarchical simplex sampling (HSS) that approximates properties closures more efficiently
and faithfully than traditional optimization based approaches. By construction, HSS generates samples of
microstructure statistics that span the corresponding microstructure hull. As a result, we also find that HSS
can be coupled with synthetic polycrystal generation software to generate diverse sets of microstructures
for subsequent mesoscale simulations. By more broadly sampling the space of possible microstructures,
it is anticipated that such diverse microstructure sets will expand our understanding of the influence of
microstructure on macroscale effective properties and inform the construction of higher-fidelity mesoscale
structure-property models.
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1. Properties Closures

The last decade and a half has seen the devel-
opment of a suite of theoretical tools to design
and optimize the microstructure of materials for
specific engineering applications. These develop-
ments were formalized in a design methodology
called microstructure sensitive design for perfor-
mance optimization (MSDPO) [1]. One of the
strengths of MSDPO is the ability to consider the
complete envelope of all physically possible prop-
erties combinations for a given design problem.
This space is referred to as a properties closure,
P , and it permits materials designers to visualize
the full design space, observe complex interactions
between properties, and make design trade-offs as
necessary (see Fig. 1).

A properties closure can be thought of loosely as
a theoretical analog of the familiar Ashby plots [2].
However, the primary purposes of these two design
tools are fundamentally different. Ashby plots, be-
ing compiled from experimental data, summarize
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the possible properties combinations of materials
that already exist, and therefore serve as a valuable
tool for materials selection. In contrast, properties
closures, being derived from constitutive models,
predict the properties combinations of all possible
microstructural configurations (including composi-
tion and other state variables) for a particular mate-
rial system whether or not they have yet been syn-
thesized, and therefore serve as a valuable tool for
materials development and design.

For example, Fig. 1, illustrates a properties clo-
sure for the combination of yield strength (σy1)
and elastic compliance (S 1111) for polycrystalline
α-Ti [10]. This properties closure was used to de-
sign an optimal crystallographic texture for a can-
tilever beam application, in which the design objec-
tive was maximization of deflection without yield.
Rather than adapting the geometry of the design to
the limitations of existing microstructures, this pro-
cedure enables adaptation of the microstructure to
suit the engineering design (note the optimal tex-
ture shown in the inset).

Existing algorithms for delineating properties
closures can be computationally expensive (partic-
ularly as the number of properties of interest in-
crease), can get stuck in local minima, and are sen-
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Figure 1: The relevant property closure for a cantilever compliant beam made of high-purity polycrystalline α-Ti with hexagonal-
orthorhombic textures. The textures predicted to provide the best and the worst performances for this case study are also shown.
Reprinted from [10], with permission from Elsevier.

sitive to a variety of algorithmic parameters. In
the present work we develop a new, more efficient
algorithm for delineating properties closures. We
also find that this algorithm has utility for gener-
ating diverse sets of synthetic microstructures that
span a properties closure, facilitating the investi-
gation of complex structure-property correlations
across a wide spectrum of possible microstructures.
This approach may be useful in conjunction with
recently developed synthetic microstructure recon-
struction software packages like DREAM.3D [14]
and Neper [23].

2. Previous Algorithms

All methods for generating properties closures
involve exercising structure-property models over a
microstructure hull, which we denote by the sym-
bol MH. A microstructure hull is the space of all
possible microstructures, as described by some pa-
rameterization relevant to the physical model un-
der consideration [1]. For instance, in a two phase
composite model for elastic modulus, a microstruc-
ture could be parameterized by the volume fraction
of one of the phases, e.g. fα, and the microstructure
hull would simply be MH = { fα | fα ∈ [0, 1]}. For
more complex constitutive models that depend on
higher-order microstructural features like the dis-

tribution of crystal orientations, or grain boundary
(GB) characters, the number of parameters can be
large or even infinite and MH is significantly more
complex [1, 17]. For example in the case of orien-
tation distribution functions (ODFs) expressed as a
generalized Fourier series, there are technically an
infinite number of coefficients that constitute the set
of state variables (or microstructural parameters).
In practice the series is truncated and a finite, but
potentially large, number of coefficients are used.1

Once the relevant MH is defined, algorithms for
delineating the corresponding properties closure in-
volve various methods of exploring MH in search
of microstructures with extremal properties.

Analytical methods include bounding theories
such as the Voigt [28] and Reuss [24] bounds, or
the Hashin-Shtrikman bounds [16]. Points exte-
rior to the bounds for P predicted by these the-
ories are guaranteed to be non-physical, however
these bounds are not tight: there are also points in-
terior to the predicted bounds that are non-physical.
This complicates optimization as mathematically
feasible solutions may be obtained that do not cor-
respond to physically realizable microstructures.
Furthermore, they provide bounds only for a sin-

1In such cases the methods presented in this work are still
compatible.
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gle property rather than simultaneous combinations
of properties (Cartesian products of such bounds
are not appropriate because materials properties are
generally not independent).

Of the computational methods, the simplest ap-
proach to construct P involves uniformly sam-
pling MH [1]. While rapid, it provides a very
poor approximation of P that explores only
a very small, centrally located portion of the
full closure. More accurate estimates of P
have been obtained by Pareto Front techniques
using various algorithms including Generalized
Weighted Sum (GWS), Adaptive Weighted Sum
(AWS), and Adaptive Normal Boundary Intersec-
tion (ANBI) [1] (see [10, 22] for a related ap-
proach). For some problems, GWS can employ
simple quadratic programming. However, it ob-
tains boundary points that are tightly clustered
around regions of high curvature. More impor-
tantly, GWS can only identify points on convex sur-
faces and P is generally not convex. The other al-
gorithms can find boundary points on concave and
convex portions of P , but at the cost of introduc-
ing nonlinear constraints requiring more compu-
tationally expensive optimization routines like se-
quential quadratic programming (SQP). A hybrid
approach can also be employed with GWS being
used to obtain an initial set of boundary points and,
e.g, ANBI being used to delineate the concave por-
tion of P [1].

As an alternative to gradient based methods, ge-
netic algorithms (GA) have also been used [1, 29].
These are generally less accurate than the determin-
istic approaches, but tend to spread out the bound-
ary points more uniformly, even along concave re-
gions.

With the exception of uniform sampling, all of
these methods are time intensive and involve a
large number of search directions, particularly as
the number of properties of interest grows. In this
paper we propose a new algorithm for approximat-
ing a properties closure that does not require the
use of optimization techniques. In addition to aid-
ing in the delineation of properties closures, this
method is extremely useful as a means to gener-
ate synthetic microstructures for subsequent simu-
lations. Our algorithm is a refinement of the uni-
form sampling approach, and, as such, retains the
benefits of simplicity and efficiency, but is signifi-
cantly more robust.

3. A New Algorithm: Hierarchical Simplex
Sampling

To construct P , we take a stochastic approach
and sample many microstructures from MH simul-
taneously, compute the relevant material properties
of each, and define P as the region in proper-
ties space that bounds all of the resulting points.
We wish to sample microstructures in such a way
that the resulting properties closure is maximal. In
other words, we want to choose microstructures
that will explore as much as possible of the true
properties closure.

The methods explained here are very general
and apply to arbitrary microstructure hulls and any
properties closure provided that appropriate consti-
tutive equations are available. Without loss of gen-
erality, we will make the ensuing discussion con-
crete by considering a specific design problem in
which the microstructure is described by its orien-
tation distribution function (ODF) and the texture
sensitive properties of interest are a single compo-
nent of the elastic compliance tensor, S 1111, and the
effective diffusivity of the GB network, D. The
overline indicates that these are the homogenized
effective properties of a polycrystal.

An arbitrary ODF can be expressed as a series
expansion in the basis of Dirac delta functions [1,
10, 18] according to:

f (q) ≈
J∑

j=1

p′j δ
(
q, jq

)
(1)

where q ∈ SO(3) is an orientation and jq is one of
a set of fundamental orientations that form a dis-
cretization of SO(3). The approximation in Eq. 1
becomes exact as J → ∞. The texture coeffi-
cient, p′j, can be interpreted as representing the
probability of observing an orientation correspond-
ing to a bin centered at jq. The set of coeffi-
cients for a given ODF can be written as a vector,
p′ =

(
p′1, p′2, . . . , p′J

)
, representing a point in a J-

dimensional vector space. Different textures have
different coefficients and consequently are repre-
sented as different points in this space. For a sin-
gle crystal with orientation iq the coefficients of the
corresponding ODF are just p′j = δi j. The set of
coefficient vectors for all of the fundamental orien-
tations is called the texture set and is defined by

M(1)
S =

{
j p′

∣∣∣∣ j p′ =
(

j p′1,
j p′2, . . . ,

j p′J
)
,

j p′i = δi j, j ∈ [1, J]
} (2)
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M(1)
S forms a microstructural basis and any ODF

can be written as a convex combination of the
basis vectors of M(1)

S . This allows us to define
the microstructure hull for crystallographic texture,
which we call the texture hull and denote M(1)

H , as
the convex hull of the texture set:

M(1)
H =

p′
∣∣∣∣∣∣∣ p′ =

(
p′1, p′2, . . . , p′J

)
,

0 ≤ p′j,
J∑

j=1

p′j = 1


(3)

As can be discerned from Eq. 3, in the Dirac ba-
sis, the texture hull is a standard (J − 1)-simplex,
whose vertices are the elements of M(1)

S . If we
had expressed the ODF in a generalized Fourier
basis—such as the generalized spherical harmon-
ics or hyperspherical harmonics—the construction
of the texture hull would have required the ex-
plicit computation of a high-dimensional convex
hull, which is generally not practical. The key to
our new algorithm lies in exploiting the simple geo-
metric structure of a microstructure hull expressed
in the Dirac basis. This geometric structure obvi-
ates the need to explicitly compute a convex hull,
and also makes the procedure for sampling far sim-
pler.

3.1. Uniform Simplex Sampling
As mentioned in Section 2, uniformly sampling

a microstructure hull leads to a poor approxima-
tion of the properties closure, P . Notwithstand-
ing, since our method is related to this process, it
will be important to understand how this might be
performed in the present context. Sampling uni-
formly from a standard (J − 1)-simplex can be ac-
complished in a number of ways including rejec-
tion sampling [5, 15], gaps between sorted sam-
ples from U(0, 1) [7, 25], and various Markov
Chain Monte Carlo (MCMC) methods such as the
class of hit-and-run algorithms [27]. The particu-
lar choice of a uniform simplex sampling approach
is not of central importance to our proposed algo-
rithm, and any technique for generating uniform
samples from the unit simplex can be substituted.
In our tests, we have employed the following pro-
cedure, which is adapted from a combination of the
inverse-transform sampling method and Theorems
2.1-2.2 of [7] (see also [25]):

1. Generate J uniformly distributed random vari-
ables X1, X2, . . . , XJ

2. Transform them to exponentially distributed
random variables via Yi = − ln Xi

3. Perform the transformation P′i = Yi/
∑J

j=1 Y j

The vector
(
P′1, P

′
2, . . . , P

′
J

)
will then be uniformly

distributed over the standard (J − 1)-simplex. We
refer to this as the uniform simplex sampling (USS)
algorithm. While this sampling method is compu-
tationally inexpensive, it does not result in points
that adequately explore the properties closure. The
reason for this is that the boundary of the simplex
(faces, edges, etc.) has measure 0 in J dimensions,
and, consequently, is never sampled. Because all
of the points come from the interior of the simplex
they will be a mixture of all J elements of M(1)

S ,
and thus do not differ sufficiently from the uniform
ODF, which is located at the barycenter of the sim-
plex. However, this observation suggests an alter-
native approach.

3.2. Hierarchical Simplex Sampling
Recognizing that the faces, edges, etc. of a

(J − 1)-simplex are just lower-dimensional sim-
plices themselves, the simplex sampling approach
may be performed in a hierarchical fashion, start-
ing with the vertices (0-faces), then the edges (1-
faces), faces (2-faces), and continuing with the
hyper-faces of increasing dimension. Let NS be the
desired number of samples. Our hierarchical sim-
plex sampling (HSS) algorithm is summarized in
the following steps:

1. Take all J of the vertices (0-faces)
2. Take max(1, bβ × NSe) points sampled uni-

formly from the (J − 1)-face (the simplex in-
terior)

3. Beginning with j = 2 and proceeding to
increasing j, take

⌊
Nr(J − j)/

∑J−1
j=2 j

⌉
points

sampled uniformly from the standard ( j − 1)-
simplex and assign them uniformly across all
of the ( j − 1)-faces. This can be accomplished
simply by applying a different random permu-
tation to the coordinates of each sample.

In this procedure, bxe is the rounding operation, and
Nr is the remaining number of samples, yet to be
taken. In Step 2, the term max(1, bβ × NSe) ensures
that at least 1 point is taken from the interior. We
employ β = 10−4; however, we have found that as
long as NS is reasonably large the value of β has
no impact on the algorithm because interior points
are never found on the boundary of P , which is
instead composed of more extreme microstructures
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that reside on lower-dimensional hyperfaces of the
simplex. In fact, our experience suggests that Step
2 can be entirely omitted, though we report it for
the sake of completeness. In Step 3 we use the
heuristic of taking a number of samples equal to⌊
Nr(J − j)/

∑J−1
j=2 j

⌉
for the ( j − 1)-simplices. This

heuristic was optimized empirically. Our HSS al-
gorithm retains much of the computational effi-
ciency of the uniform simplex sampling approach,
but probes far more of the properties closure, as
will be demonstrated.

4. Results & Discussion

For the present design problem we use this HSS
algorithm to sample textures from M(1)

S . We will
denote this set of sampled textures

S =
{
p′s

∣∣∣∣ p′s =
{
p′j

}
s
, j ∈ [1, J] , s ∈ [1,NS]

}
(4)

where p′s is the s-th sample, and can be interpreted
as a vector of coefficients

{
p′j

}
s

=
(
p′1, p′2, . . . , p′J

)T
.

In this way S, which is a set of sets, can be repre-
sented as a matrix where S js is the j-th coefficient
of the s-th sample.

To demonstrate the effectiveness of our new HSS
algorithm, we map the microstructures sampled
from M(1)

H (i.e. S) to the properties space. This
requires the use of relevant constitutive equations
expressed in spectral form. For the present work
we employ polycrystal homogenization models for
the effective elastic compliance (S 1111) and effec-
tive grain boundary network diffusivity (D) of poly-
crystalline Al that are adapted from [18] to accom-
modate fully three-dimensional ODFs. The deriva-
tion and application of these models are discussed
in depth in [19]. We mention them only briefly
here.

The model for S 1111 is derived from the Voigt
isostrain model [4, 28], which provides a simple
upper-bound and can be expressed as:

S 1111 =
∑
n,l,m

cn∗
l,m [s1111]n

l,m (5)

with

[s1111]n
l,m =

∫
S 3

Zn∗
l,m (q) S 1111(q) dq (6)

In Eq. 5, cn
l,m are the coefficients of an ODF ex-

pressed in the basis of hyperspherical harmonics,
Zn

l,m(q), and
∗

is the complex conjugate operation.

The function S 1111(q) provides the single-crystal
orientation dependence of S 1111. The transforma-
tion required to relate the hyperspherical harmonic
coefficients to the Dirac coefficients of Eq. 1 is pro-
vided in [19]. Formally, the hyperspherical har-
monic representation consists of an infinite series,
but in all practical applications truncation is ap-
plied. In this work we include all terms through
n = 20.

For D we employ the generalized effective
medium (GEM) model [6]:

p1

D1/s
1 −

(
2D

)1/s

D1/s
1 +

(
p−1

c,2 − 1
) (

2D
)1/s +

p2

D1/t
2 −

(
2D

)1/t

D1/t
2 +

(
p−1

c,2 − 1
) (

2D
)1/t = 0 (7)

where D1 and D2 are the diffusivies of the low- and
high-angle grain boundaries, p1 and p2 are their
number fractions, pc,2 is the percolation threshold
for the high-angle grain boundaries, and s and t are
the critical exponents that are assumed to be fixed
for a given universality class. In our implementa-
tion, p1, p2, and pc,2 are predicted from the triple
junction fractions [11–13, 20, 26], which, in turn,
are predicted from the ODF coefficients, p′j, as ex-
plained in [19].

4.1. A Note on Discretization

These structure-property models are built from
the same spectral approach embodied in Eq. 1, and
consequently require a discretization of the relevant
space of state variables. For texture sensitive prop-
erties like S 1111 that space is SO(3) and the dis-
cretization produces the fundamental orientations
already discussed. For such models a uniform or
equispaced discretization is a logical choice. How-
ever, grain boundary network sensitive properties
like D depend on grain boundary misorientations
and their interactions at triple junctions, and conse-
quently on the spacing between fundamental orien-
tations in SO(3). This results in special considera-
tions regarding the choice of discretization.

In particular, the model for D depends on the
triple junction fractions, and the types of triple
junctions that can be represented are limited by the
unique triplets of fundamental orientations (mod-
ulo crystal and triple junction symmetries). The
triple junction fractions (J0, J1, J2, and J3) char-
acterize the fraction of triple junctions coordinated
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J0 J1 J2 J3

0.6480 0.3329 0.0139 0.0052

Table 1: Fraction of each triple junction type appearing in the
set of fundamental triple junctions resulting from the multi-
level pseudo-grid discretization of orientation space.

by 0, 1, 2, or 3 low-angle grain boundaries, re-
spectively. Importantly, a uniform grid of fun-
damental orientations does not produce a uniform
distribution of triple junction types. The map-
ping between the spaces is such that certain types
of triple junctions, J2 in particular, are relatively
rare, but are experimentally observed [12], and
strongly influence grain boundary network connec-
tivity as the only types of triple junctions at which
non-closed connected paths of high-angle (typi-
cally high-diffusivity) grain boundaries can termi-
nate. Thus, the absence of J2 type triple junctions
would restrict the grain boundary network configu-
rations that could be considered. The resolution of
a regular discretization of SO(3) necessary to pro-
duce triple junctions of type 2 is prohibitively high,
therefore, we employ an alternative discretization
of SO(3), as described below, which allows for rep-
resentation of all 4 triple junction types with fewer
discretization points2.

First we define a coarse grid of 8 ori-
entations in the fundamental zone (φ1 ∈

{45◦, 135◦, 225◦, 315◦}×Φ ∈ {20◦}×φ2 ∈ {0◦, 45◦}).
Around each of these orientations we subsequently
define a local octahedral subgrid of orientations
generated by rotations of of 10◦ about the positive
and negative 〈100〉, 〈010〉, and 〈001〉 directions.
The resulting set of fundamental orientations are
shown in Fig. 2. Table 1 shows that, while the
distribution of triple junction types among the
fundamental triple junctions is still not equal, all
types are represented.

4.2. Algorithm Performance Comparison

The model for D assumes spatially uncorre-
lated grain orientations, so that the statistics of the
GB network structure are completely specified by
the ODF. However, D has a rather complicated
non-linear dependence on the texture coefficients,
which results in a non-convex properties closure
that is challenging to delineate and thus presents
an opportunity to compare the performance of our

2See [19] for more discussion related to this phenomenon.

Figure 2: Fundamental orientations plotted in the cubic fun-
damental zone (FZ) using the quaternion parameterization
and an isovolumetric projection [21] to three-dimensions.
The blue markers correspond to the original coarse grid of
orientations, and the red markers correspond to the respective
local octahedral subgrids of orientations. The markers on the
bottom of the figure extend below the boundary of the FZ and
would normally be replaced by their periodic images inside
of the top of the FZ, but they are presented as shown to high-
light the structure of the grid and subgrids. The lines between
points are for clarity of visualization only.

HSS algorithm with the prior work described in
Section 2.

To compare the performance of each algorithm,
we evaluated the number of points (solutions) that
each algorithm obtained when run for approxi-
mately the same duration (approximately 370 sec.).
For the GWS, AWS, and ANBI algorithms, all so-
lutions obtained were boundary points of the ap-
proximation of P that the method found (i.e. the
solutions were either on the true surface of P or
they converged to local minima as they approached
the surface of P). For the GA, USS, and HSS al-
gorithms, additional points were obtained on the
interior of P , and for these methods we iden-
tified the boundary of the resulting point clouds
(and the points residing on them) using the built-in
boundary() function in MATLAB, with a “shrink
factor” equal to 1. This approach identifies the
point cloud boundary by computing the respective
α-shape [8, 9] with the smallest radius that pro-
duces a single region.

The computation times, and number of total
points and boundary points obtained per unit time
are provided in Table 2. For a fixed time, our
HSS algorithm obtained between 8 and 44 times
the number of boundary points as the traditional
methods (GWS, AWS, ANBI, GA), and because it
probed a much greater portion of P than the USS
algorithm (even though it found roughly the same
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Table 2: Performance comparison between the HSS algorithm from the present work and traditional property closure delineation
algorithms.

Method Time (s) Points/Time (s−1) Boundary Points/Time (s−1)

GWS 359.10 0.10 0.10
AWS 377.31 0.02 0.02
ANBI 377.82 0.03 0.03
GA 372.10 0.54 0.11
USS 367.50 90.06 0.40
HSS 373.85 88.53 0.87

total number of points) the HSS algorithm found
more than twice as many boundary points as the
USS algorithm.

In addition to the number of points obtained, the
fidelity of the resulting approximation of P is of
great interest. Since an exact analytical expression
for P is not available, the results of each algorithm
were compared to a high-resolution approximation
generated by the following procedure. A total of
108 ODFs were sampled via HSS in groups of 105

(i.e. the sampling was parallelized for computa-
tional efficiency). Normalized properties space co-
ordinates, r =

[
x
(
p′s

)
, y

(
p′s

)]T , were then computed
for all points according to

x
(
p′s

)
=

2S 1111
(
p′s

)
− (S max

1111 + S min
1111)

S max
1111 − S min

1111

(8a)

y
(
p′s

)
=

2 ln D
(
p′s

)
− (ln Dmax + ln Dmin)

ln Dmax − ln Dmin
(8b)

where Xmax and Xmin are the theoretical maximum
and minimum for effective property X. For each
group of 105 ODFs, α-shapes with radii of 0.05,
0.1, and∞ (corresponding to the convex hull) were
then computed and the union of the point sets
falling on each of these three α-shapes were stored.
Because they do not enter into the calculation re-
quired to delineate P , the interior points were not
stored. This downselection process preserved a to-
tal of 887,814 of the original 108 ODFs. Let us
denote this set of sampled ODFs by S and its im-
age in the normalized properties space by R. The
high-resolution approximation of P was then com-
puted by finding the most distant elements of R in
every direction by a process adapted from the GWS
algorithm. For each direction defined by unit vec-
tors n̂i = [cos θi, sin θi]T , with 256 evenly spaced
θi ∈ [0, 2π], the point rs ∈ R falling approximately
on the boundary of P was chosen to be the one
that maximized the projection rT

s n̂i subject to the

collinearity constraint

1 −
rT

s n̂i

‖rs‖
< τ (9)

where a collinearity tolerance of τ = 10−4 was
used, resulting in an angular tolerance of 0.81◦.
The boundary of the high-resolution approxima-
tion to P resulting from this procedure is shown
in Fig. 3. The density of points rs ∈ R located on
the left and right sides of R is lower than in other
regions and so the approximation was corrected by
manually excluding a total of 16 points (shown in
red) that appear to be interior to the rest of the clo-
sure boundary. The fidelity of the approximations
to P obtained via each of the algorithms was eval-
uated by comparison with this high-resolution ap-
proximation to P .

Figure 3: Calculation of the high-resolution approximation
to P . Black markers are the 887,814 points remaining after
the downselection process. Colored markers are the subset
identified as boundary points. Red markers were manually
excluded. Green markers indicate points used to define the
high-resolution approximation to P to which the results of
the various algorithms are compared in Fig. 4.
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Figure 4: Comparison of points and closures obtained using traditional property closure delineation algorithms and the HSS
algorithm from the present work. The dark gray region in each figure is the high-resolution closure from Fig. 3.

As illustrated in Fig. 4, the GWS, AWS, and
ANBI methods were unable to find points on the
boundaries of P where those boundaries were
nearly flat. In many cases multiple search direc-
tions converged to nearly identical solutions. Al-
though AWS and ANBI are theoretically capable of
finding points on concave regions, we observed that
for this particular problem—for which the mapping
between design space and objective space are quite
complex—they were unable to do so. The GA
respected the concavity of P but produced very
sparse coverage of the left and right sides of P ,
resulting in a poor approximation. All of these op-
timization based algorithms can easily converge to
local minima, and are sensitive to the starting lo-
cation and various other algorithm-specific tuning
parameters.

Although reproducible and absent of any ad-
justable parameters, USS produced points sampled
entirely from the interior of M(1)

H which are tightly
clustered in the upper portion of P and result in
an extremely uninformative and inaccurate approx-
imation of P . In contrast, for the same computa-
tional time, the solutions found by HSS fill nearly
the entirety of P and strictly respect the concave

region of P , resulting in the most informative
and tight fitting approximation of P . Although
stochastic, HSS produces reliably high-quality re-
sults. The only algorithmic parameters are how
many samples to take at each level of the hierarchy,
but these are fixed if the heuristic described earlier
is employed.

We note that with the approximately 370 sec.
run time, resulting in 33, 096 points, the results
of the HSS approach are not perfect, and the lo-
cations of remaining error are concentrated in the
left and right portions of P as shown in Fig. 4.
As with most of the points on the boundary of
P , these regions correspond to low-dimensional
(roughly three- to six-dimensional) hyperfaces of
the microstructure hull simplex (see also Fig. 6).
There are no immediately obvious features that dis-
tinguish points in these regions of P from other
points on its boundary (e.g. they do not reside
on particular hyperfaces, but rather are distributed
across many different hyperfaces that do not gen-
erally even share a vertex). However, as shown in
Fig. 5, increasing the number of samples reduces
this deviation to arbitrary accuracy. We note also
that the computational time to generate more sam-
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Figure 5: Illusrtration of the accuracy of the approximation of P obtained via HSS with increasing number of samples, NS, as
indicated in the upper-left corner of each plot.

ples scales linearly with NS.
In addition to the isochronal comparison already

made, we can also consider an isoperformance
comparison. In this context the question becomes
“How much time is required to achieve a similar
performance?”. To answer this question we must
first note that the GWS, AWS, and ANBI methods
were unable to respect the concave regions of the
closure and for many search directions the algo-
rithms converge to the same point. Consequently,
considering more directions and applying more re-
sources/time will not result in a closure approxi-
mation that is dramatically improved over what is
already shown in Fig. 4. To verify this, we doubled
the resolution for the GWS, AWS, and ANBI meth-
ods and the only changes that were observed were a
few more points found on the top portion of the clo-
sures (the left, right, and bottom were unchanged),
for the GWS and AWS algorithms, yet the required
computation time nearly doubled. The ANBI algo-
rithm found fewer points near the top (reflective of
the parameter sensitivity of the algorithm). In con-
trast, the USS and GA algorithms should converge
to the true closure with increasing number of sam-
ples, so for these cases a meaningful comparison
might be made.

Figure 6 shows 106 microstructures sampled via
the HSS algorithm plotted in the properties space,
with each point colored by the number of nonzero
elements in its corresponding Dirac coefficient vec-
tor, p′. This provides an indication of what por-
tions of the microstructure hull map to various re-
gions of the properties closure. If all of the coor-
dinates of p′ are nonzero then a point is interior
to the microstructure hull simplex. Microstructures
with fewer nonzero elements in p′ inhabit lower-
dimensional hyperfaces of the microstructure hull.
It is clear from Fig. 6 that the boundary of the
properties closure is formed by microstructures in-

Figure 6: A total of 106 microstructures sampled via HSS
with markers colored by the number of nonzero elements of
the respective Dirac ODF coefficients, p′. Microstructures
with fewer nonzero elements inhabit lower dimensional hy-
perfaces of the microstructure hull simplex. Microstructures
with many nonzero elements are heavily concentrated in the
upper region of P . Most (97%) of the extremal microstruc-
tures (which constitute the boundary of the point cloud) have
between 2-3 nonzero elements, although finite marker size
leads to marker overlap in the upper region making this diffi-
cult to see visually.

habiting very low-dimensional hyperfaces (97% of
those on the point cloud boundary have between 2
and 3 nonzero elements). Because the USS algo-
rithm samples exclusively from the interior of the
microstructure hull the probability of obtaining a
point on its surface is exactly zero, so that it appears
impossible to find microstructures on the boundary
of P via the USS algorithm. However, we might
consider how close of an approximation might be
achieved. Using the USS algorithm, if the probabil-
ity of having a single coordinate within ε of zero is
Q ∈ (0, 1) then the probability of sampling a point
having J − j of its coordinates within ε of zero is
QJ− j, which for any j < J goes to zero with in-
creasing dimension. Thus, good approximations to
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P may only be expected for very low-dimensional
problems. For the present problem with a modest
value of J = 56, the probability of obtaining a mi-
crostructure with even half of its coordinates close
to zero via the USS algorithm would be on the or-
der of 10−28.

For the GA an isoperformance comparison is
more practical, and Fig. 7 shows a comparison
of the computation times required to generate
microstructural samples with similar distributions
over P using the GA and the HSS algorithms,
respectively, for two different levels of accuracy.
While the GA does show the ability to achieve sim-
ilar levels of fidelity, it is far less efficient at doing
so, with the computation time being more than an
order of magnitude greater than the HSS algorithm.

Figure 7: Comparison of computation times to generate mi-
crostructures with similar distributions over P using the GA
algorithm (left) and HSS algorithm (right). The top and bot-
tom rows show the comparison for two different levels of ac-
curacy/effort.

5. Generating Diverse Microstructural Sets for
Mesoscale Simulations

In addition to the delineation of the boundary of
P , which provides an atlas of the space of all the-
oretically feasible property combinations, we have
found the HSS algorithm useful in generating di-
verse sets of microstructures. It is becoming in-
creasingly common to perform mesoscale simula-
tions on synthetic polycrystals to investigate the
influence of microstructure on, e.g., mechanical
properties, phase transitions, or diffusion. Tools

such as Neper [23] and DREAM.3D [14] facili-
tate the generation of volumetric tessellations and
meshes representing two- and three-dimensional
polycrystals that can subsequently be used for such
mesoscale simulations (e.g. via the finite element
method (FEM)). While simulation of an individ-
ual microstructure can be instructive, it is gener-
ally desirable to perform simulations on a large set
of microstructures so that trends can be observed
and more general conclusions can be drawn regard-
ing the underlying physical phenomena that are
not masked by the idiosyncrasies of a single mi-
crostructural instantiation. The HSS algorithm can
be used to generate such microstructural sets that
span the microstructure hull of interest and conse-
quently capture the full range of microstructural di-
versity.

Because the focus of the present work has been
on the texture hull, M(1)

H , we illustrate the mi-
crostructural diversity of a set of ODFs sampled
from M(1)

H via the HSS algorithm. After obtaining
the Dirac ODF coefficients, p′s, for each sample via
HSS, continuous ODFs were generated according
to the kernel density estimator:

f̂ (q) =

J∑
j=1

p′j K
(
q, jq

)
(10)

where K(·) was chosen to be the de la Valle-Poussin
kernel with a 15◦ half-width. This process was
carried out using the MTEX toolbox [3] for MAT-
LAB. The resulting smooth and continuous ODFs
are presented in (001) pole figures colored by mul-
tiples of the random distribution (MRD) in the top
left of each of the subfigures in Fig. 8. The fun-
damental orientations for this application were de-
fined by a regular grid in Euler angle space with a
resolution of 20◦, resulting in a total of 150 funda-
mental orientations.

Having sampled ODFs from M(1)
H , it is possible

to supply these to synthetic polycrystal generation
software packages to specify a microstructure in
a format suitable for mesoscale simulations (e.g.
FEM). Figure 8 shows synthetic polycrystals gen-
erated and meshed using Neper [23], with respec-
tive grain orientations sampled from the ODFs we
obtained via HSS and assigned randomly. The sam-
pled orientations for each microstructure are pre-
sented in (001) pole figures in the top right of each
of the subfigures in Fig. 8 together with the corre-
sponding meshed polycrystalline microstructures.
We note that this method of assigning grain orien-
tations satisfies the target ODF only on a number
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Figure 8: ODFs sampled from M(1)
H via HSS and their use in conjunction with synthetic polycrystal generation software. In each

subfigure the kernel density estimator for the ODFs, as defined by Eq. 10, is plotted in the upper left (001) pole figure (see MRD
colorbar in bottom right of figure). The orientations sampled from each ODF are shown in the upper right (001) pole figure. The
meshed synthetic polycrystalline microstructures are also shown with grains colored by their orientation according to the inverse
pole figure coloring scheme (legend shown in bottom right of figure).

fraction basis and a more sophisticated approach
to assigning grain orientations, such as is imple-
mented in the DREAM.3D [14] software package,
would be necessary to match the ODF statistics on
a volume fraction basis. Nonetheless, this simple
approach suffices to illustrate the potential for cou-
pling HSS with synthetic microstructure generation
software to produce diverse microstructural sets for
subsequent mesoscale simulation and analysis.

Other microstructural statistics, such as grain
boundary character distribution (GBCD) functions,
or triple junction distribution (TJD) functions, can
also be sampled via HSS from their respective mi-
crostructure hulls (M(2)

H and M(3)
H respectively). Re-

construction of microstructures that satisfy such
statistics can be accomplished via Monte Carlo
methods (see [30]).

6. Conclusions

We have described a new algorithm called hi-
erarchical simplex sampling (HSS) for the effi-
cient delineation of materials properties closures
and the generation of diverse microstructural sets.

We compared the performance of HSS to tradi-
tional algorithms for property closure delineation
and found that HSS obtained more boundary points
than traditional algorithms for a fixed run time by a
factor of between 8 and 44. In addition, the prop-
erties closure resulting from the HSS method was
a more faithful representation of the true properties
closure, with points more evenly distributed across
the closure and strictly respecting concave regions.

We also demonstrated the use of HSS to gener-
ate sets of microstructure statistics (e.g. orienta-
tion distribution functions) that span their respec-
tive microstructure hulls. The resulting microstruc-
ture sets collectively encode the theoretical range
of microstructural diversity contained within the
corresponding microstructure hull. As a practical
use case, we illustrated the potential of coupling
HSS with existing synthetic polycrystal generation
software to produce diverse sets of microstructures
that are fully meshed and could subsequently be
subjected to mesoscale simulations (e.g. via the
finite element method). We anticipate that simula-
tions performed on such diverse microstructure sets
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will explore a broader range of material responses
and facilitate the derivation of more general con-
clusions that are not masked by the idiosyncrasies
of a single microstructural instantiation.
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